cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062189 a(n) = 2 * 3^(n-2)*n*(1+2*n).

Original entry on oeis.org

0, 2, 20, 126, 648, 2970, 12636, 51030, 198288, 747954, 2755620, 9959598, 35429400, 124357194, 431530092, 1482720390, 5050815264, 17075199330, 57338232372, 191385721566, 635369601960, 2099044209402, 6903833113980
Offset: 0

Views

Author

Henry Bottomley, Jun 13 2001

Keywords

Comments

Define a triangle with left (first) column T(n,0)=n^2 for n=0,1,2,3.. and the remaining terms T(r,c) = T(r-1,c-1) + 2*T(r,c-1). Then T(n,n) = a(n) on the diagonal. T(n,1) = A056105(n). - J. M. Bergot, Jan 26 2013

Programs

  • GAP
    List([0..30], n-> 2*3^(n-2)*n*(1+2*n)); # G. C. Greubel, Jun 06 2019
  • Magma
    [2*3^(n-2)*n*(1+2*n): n in [0..30]]; // G. C. Greubel, Jun 06 2019
    
  • Mathematica
    Table[2*3^(n-2)*n*(1+2*n), {n,0,30}] (* G. C. Greubel, Jun 06 2019 *)
    LinearRecurrence[{9,-27,27},{0,2,20},30] (* Harvey P. Dale, Jun 08 2022 *)
  • PARI
    { for (n=0, 200, write("b062189.txt", n, " ", n*(4*n + 2)*3^(n - 2)) ) } \\ Harry J. Smith, Aug 02 2009
    
  • Sage
    [2*3^(n-2)*n*(1+2*n) for n in (0..30)] # G. C. Greubel, Jun 06 2019
    

Formula

a(n) = A002943(n)*A000244(n-2). Binomial transform of A007758.
G.f.: 2*x*(1+x)/(1-3*x)^3. - Ralf Stephan, Mar 13 2003
a(n) = 2*A077616(n). - R. J. Mathar, Jan 29 2013
E.g.f.: 2*x*(1+2*x)*exp(3*x). - G. C. Greubel, Jun 06 2019