A062139 Coefficient triangle of generalized Laguerre polynomials n!*L(n,2,x) (rising powers of x).
1, 3, -1, 12, -8, 1, 60, -60, 15, -1, 360, -480, 180, -24, 1, 2520, -4200, 2100, -420, 35, -1, 20160, -40320, 25200, -6720, 840, -48, 1, 181440, -423360, 317520, -105840, 17640, -1512, 63, -1, 1814400, -4838400, 4233600
Offset: 0
Examples
Triangle begins: 1; 3, -1; 12, -8, 1; 60, -60, 15, -1; 360, -480, 180, -24, 1; 2520, -4200, 2100, -420, 35, -1; ... 2!*L(2,2,x) = 12 - 8*x + x^2. Unsigned row 3 polynomial in reverse form as the numerator of a continued fraction: 1 - x/(1 + 4*x/(1 + 3*x/(1 + 3*x/(1 + 2*x/(1 + 2*x/(1 + x/(1 + x))))))) = (60*x^3 + 60*x^2 + 15*x + 1)/(24*x^4 + 96*x^3 + 72*x^2 + 16*x + 1). - _Peter Bala_, Oct 06 2019
Links
- Indranil Ghosh, Rows 0..125, flattened
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
- Index entries for sequences related to Laguerre polynomials
Crossrefs
Programs
-
Maple
with(PolynomialTools): p := n -> (n+2)!*hypergeom([-n],[3],x)/2: seq(CoefficientList(simplify(p(n)), x), n=0..9); # Peter Luschny, Apr 08 2015
-
Mathematica
Flatten[Table[((-1)^m)*n!*Binomial[n+2,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(((-1)^k)*n!*binomial(n+2, n-k)/k!, ", ");); print(););} \\ Michel Marcus, May 06 2014
-
PARI
row(n) = Vecrev(n!*pollaguerre(n, 2)); \\ Michel Marcus, Feb 06 2021
-
Python
import math f=math.factorial def C(n,r):return f(n)//f(r)//f(n-r) i=0 for n in range(16): for m in range(n+1): i += 1 print(i,((-1)**m)*f(n)*C(n+2,n-m)//f(m)) # Indranil Ghosh, Feb 24 2017
-
Python
from functools import cache @cache def T(n, k): if k < 0 or k > n: return 0 if k == n: return (-1)**n return (n + k + 2) * T(n-1, k) - T(n-1, k-1) for n in range(7): print([T(n,k) for k in range(n + 1)]) # Peter Luschny, Mar 25 2024
Formula
T(n, m) = ((-1)^m)*n!*binomial(n+2, n-m)/m!.
E.g.f. for m-th column sequence: ((-x/(1-x))^m)/(m!*(1-x)^3), m >= 0.
n!*L(n,2,x) = (n+2)!*hypergeom([-n],[3],x)/2. - Peter Luschny, Apr 08 2015
From Werner Schulte, Mar 24 2024: (Start)
T(n, k) = (n+k+2) * T(n-1, k) - T(n-1, k-1) with initial values T(0, 0) = 1 and T(i, j) = 0 if j < 0 or j > i.
T = T^(-1), i.e., T is matrix inverse of T. (End)
Comments