A062196 Triangle read by rows, T(n, k) = binomial(n, k)*binomial(n + 2, k).
1, 1, 3, 1, 8, 6, 1, 15, 30, 10, 1, 24, 90, 80, 15, 1, 35, 210, 350, 175, 21, 1, 48, 420, 1120, 1050, 336, 28, 1, 63, 756, 2940, 4410, 2646, 588, 36, 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45, 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55
Offset: 0
Examples
Triangle starts: n\k 0...1.....2......3..... 4.....; [0] 1; [1] 1, 3; [2] 1, 8, 6; [3] 1, 15, 30, 10; [4] 1, 24, 90, 80, 15; [5] 1, 35, 210, 350, 175, 21; [6] 1, 48, 420, 1120, 1050, 336, 28; [7] 1, 63, 756, 2940, 4410, 2646, 588, 36; [8] 1, 80, 1260, 6720, 14700, 14112, 5880, 960, 45; [9] 1, 99, 1980, 13860, 41580, 58212, 38808, 11880, 1485, 55.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Family of polynomials (see A062145): A008459 (c=1), A132813 (c=2), this sequence (c=3), A062145 (c=4), A062264 (c=5), A062190 (c=6).
Diagonals: A000217 (k=n), A002417 (k=n-1), A001297 (k=n-2), A105946 (k=n-3), A105947 (k=n-4), A105948 (k=n-5), A107319 (k=n-6).
Programs
-
Magma
A062196:= func
; [A062196(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 21 2025 -
Maple
T := (n, k) -> binomial(n, k)*binomial(n + 2, k); seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, Sep 30 2021
-
Mathematica
A062196[n_, k_]:= Binomial[n, k]*Binomial[n+2, k]; Table[A062196[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 21 2025 *)
-
SageMath
def A062196(n,k): return binomial(n,k)*binomial(n+2,k) print(flatten([[A062196(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Feb 21 2025
Formula
T(m, k) = [x^k] N(2; m, x), where N(2; m, x) = ((1-x)^(3+2*m))*(d^m/dx^m)(x^m/(m!*(1-x)^(m+3))).
N(2; m, x) = Sum_{j=0..m} ((binomial(m, j)*(2*m+2-j)!/((m+2)!*(m-j)!)*(x^(m-j)))*(1-x)^j).
T(n,m) = binomial(n, m)*(binomial(n+1, m) + binomial(n+1, m-1)). - Vladimir Kruchinin, Apr 06 2018
From G. C. Greubel, Feb 21 2025: (Start)
Extensions
New name by Peter Luschny, Sep 30 2021
Comments