cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062200 Number of compositions of n such that two adjacent parts are not equal modulo 2.

Original entry on oeis.org

1, 1, 1, 3, 2, 6, 6, 11, 16, 22, 37, 49, 80, 113, 172, 257, 377, 573, 839, 1266, 1874, 2798, 4175, 6204, 9274, 13785, 20577, 30640, 45665, 68072, 101393, 151169, 225193, 335659, 500162, 745342, 1110790, 1655187, 2466760, 3675822, 5477917, 8163217, 12164896, 18128529, 27015092
Offset: 0

Views

Author

Vladeta Jovovic, Jun 13 2001

Keywords

Comments

Also (0,1)-strings such that all maximal blocks of 1's have even length and all maximal blocks of 0's have odd length.

Examples

			From _Joerg Arndt_, Oct 27 2012:  (Start)
The 11 such compositions of n=7 are
  [ 1]  1 2 1 2 1
  [ 2]  1 6
  [ 3]  2 1 4
  [ 4]  2 3 2
  [ 5]  2 5
  [ 6]  3 4
  [ 7]  4 1 2
  [ 8]  4 3
  [ 9]  5 2
  [10]  6 1
  [11]  7
The 16 such compositions of n=8 are
  [ 1]  1 2 1 4
  [ 2]  1 2 3 2
  [ 3]  1 2 5
  [ 4]  1 4 1 2
  [ 5]  1 4 3
  [ 6]  1 6 1
  [ 7]  2 1 2 1 2
  [ 8]  2 1 2 3
  [ 9]  2 1 4 1
  [10]  2 3 2 1
  [11]  3 2 1 2
  [12]  3 2 3
  [13]  3 4 1
  [14]  4 1 2 1
  [15]  5 2 1
  [16]  8
(End)
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problems 2.4.3, 2.4.13).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,2,1,-1},{1,1,1,3},50] (* Harvey P. Dale, Feb 26 2012 *)
    Join[{1},Table[Sum[ Binomial[n-j+1,3j-n+1],{j,0,n-1}],{n,50}]] (* Harvey P. Dale, Feb 26 2012 *)
  • PARI
    x='x+O('x^66); Vec(-(x^2-x-1)/(x^4-x^3-2*x^2+1)) \\ Joerg Arndt, May 13 2013

Formula

a(n) = Sum_{j=0..n+1} binomial(n-j+1, 3*j-n+1).
a(n) = 2*a(n-2) + a(n-3) - a(n-4).
G.f.: -(x^2-x-1)/(x^4-x^3-2*x^2+1). More generally, g.f. for the number of compositions of n such that two adjacent parts are not equal modulo p is 1/(1-Sum_{i=1..p} x^i/(1+x^i-x^p)).
G.f.: W(0)/(2*x^2) -1/x^2, where W(k) = 1 + 1/(1 - x*(k - x)/( x*(k+1 - x) - 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013