cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A102426 Triangle read by rows giving coefficients of polynomials defined by F(0,x)=0, F(1,x)=1, F(n,x) = F(n-1,x) + x*F(n-2,x).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 4, 1, 1, 6, 5, 1, 4, 10, 6, 1, 1, 10, 15, 7, 1, 5, 20, 21, 8, 1, 1, 15, 35, 28, 9, 1, 6, 35, 56, 36, 10, 1, 1, 21, 70, 84, 45, 11, 1, 7, 56, 126, 120, 55, 12, 1, 1, 28, 126, 210, 165, 66, 13, 1, 8, 84, 252, 330, 220, 78, 14, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1
Offset: 0

Views

Author

Russell Walsmith, Jan 08 2005

Keywords

Comments

Essentially the same as A098925: a(0)=0 followed by A098925. - R. J. Mathar, Aug 30 2008
F(n) + 2x * F(n-1) gives Lucas polynomials (cf. A034807). - Maxim Krikun (krikun(AT)iecn.u-nancy.fr), Jun 24 2007
After the initial 0, these are the nonzero coefficients of the Fibonacci polynomials; see the Mathematica section. - Clark Kimberling, Oct 10 2013
Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014
Aside from the initial zeros, these are the antidiagonals read from bottom to top of the numerical coefficients of the Maurer-Cartan form matrix of the Leibniz group L^(n)(1,1) presented on p. 9 of the Olver paper, which is generated as exp[c. * M] with (c.)^n = c_n and M the Lie infinitesimal generator A218272. Reverse of A011973. - Tom Copeland, Jul 02 2018

Examples

			The first few polynomials are:
  0
  1
  1
  x + 1
  2*x + 1
  x^2 + 3*x + 1
  3*x^2 + 4*x + 1
------------------
From _Tom Copeland_, Jan 19 2016: (Start)
[n]:
0:  0
1:  1
2:  1
3:  1  1
4:  2  1
5:  1  3  1
6:  3  4  1
7:  1  6  5   1
8:  4 10  6   1
9:  1 10 15   7   1
10: 5 20 21   8   1
11: 1 15 35  28   9  1
12: 6 35 56  36  10  1
13: 1 21 70  84  45 11 1
(End)
		

References

  • Dominique Foata and Guo-Niu Han, Multivariable tangent and secant q-derivative polynomials, Manuscript, Mar 21 2012.

Crossrefs

Upward diagonals sums are A062200. Downward rows are A102427. Row sums are A000045. Row terms reversed = A011973. Also A102428, A102429.
All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways.

Programs

  • Magma
    [0] cat [Binomial(Floor(n/2)+k, Floor((n-1)/2-k) ): k in [0..Floor((n-1)/2)], n in [0..17]]; // G. C. Greubel, Oct 13 2019
    
  • Mathematica
    Join[{0}, Table[ Select[ CoefficientList[ Fibonacci[n, x], x], 0 < # &], {n, 0, 17}]//Flatten] (* Clark Kimberling, Oct 10 2013 and slightly modified by Robert G. Wilson v, May 03 2017 *)
  • PARI
    F(n) = if (n==0, 0, if (n==1, 1, F(n-1) + x*F(n-2)));
    tabf(nn) = for (n=0, nn, print(Vec(F(n)))); \\ Michel Marcus, Feb 10 2020

Formula

Alternatively, as n is even or odd: T(n-2, k) + T(n-1, k-1) = T(n, k), T(n-2, k) + T(n-1, k) = T(n, k)
T(n, k) = binomial(floor(n/2)+k, floor((n-1)/2-k) ). - Paul Barry, Jun 22 2005
Beginning with the second polynomial in the example and offset=0, P(n,t)= Sum_{j=0..n}, binomial(n-j,j)*x^j with the convention that 1/k! is zero for k=-1,-2,..., i.e., 1/k! = lim_{c->0} 1/(k+c)!. - Tom Copeland, Oct 11 2014
From Tom Copeland, Jan 19 2016: (Start)
O.g.f.: (x + x^2 - x^3) / (1 - (2+t)*x^2 + x^4) = (x^2 (even part) + x*(1-x^2) (odd)) / (1 - (2+t)*x^2 + x^4).
Recursion relations:
A) p(n,t) = p(n-1,t) + p(n-2,t) for n=2,4,6,8,...
B) p(n,t) = t*p(n-1,t) + p(n-2,t) for n=3,5,7,...
C) a(n,k) = a(n-2,k) + a(n-1,k) for n=4,6,8,...
D) a(n,k) = a(n-2,k) + a(n-1,k-1) for n=3,5,7,...
Relation A generalized to MV(n,t;r) = P(2n+1,t) + r R(2n,t) for n=1,2,3,... (cf. A078812 and A085478) is the generating relation on p. 229 of Andre-Jeannine for the generalized Morgan-Voyce polynomials, e.g., MV(2,t;r) = p(5,t) + r*p(4,t) = (1 + 3t + t^2) + r*(2 + t) = (1 + 2r) + (3 + r)*t + t^2, so P(n,t) = MV(n-4,t;1) for n=4,6,8,... .
The even and odd polynomials are also presented in Trzaska and Ferri.
Dropping the initial 0 and re-indexing with initial m=0 gives the row polynomials Fb(m,t) = p(n+1,t) below with o.g.f. G(t,x)/x, starting with Fb(0,t) = 1, Fb(1,t) = 1, Fb(2,t) = 1 + t, and Fb(3,t) = 2 + t.
The o.g.f. x/G(x,t) = (1 - (2+t)*x^2 + x^4) / (1 + x - x^2) then generates a sequence of polynomials IFb(t) such that the convolution Sum_{k=0..n} IFb(n-k,t) Fb(k,t) vanishes for n>1 and is one for n=0. These linear polynomials have the basic Fibonacci numbers A000045 as an overall factor:
IFb(0,t) = 1
IFb(1,t) = -1
IFb(2,t) = -t
IFb(3,t) = -1 (1-t)
IFb(4,t) = 2 (1-t)
IFb(5,t) = -3 (1-t)
IFb(6,t) = 5 (1-t)
IFb(7,t) = -8 (1-t)
IFb(8,t) = 13 (1-t)
... .
(End)

Extensions

Name corrected by John K. Sikora, Feb 10 2020

A300372 T(n,k)=Number of nXk 0..1 arrays with every element equal to 2 or 3 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 3, 3, 3, 3, 0, 0, 2, 3, 3, 3, 2, 0, 0, 6, 8, 4, 4, 8, 6, 0, 0, 6, 16, 22, 32, 22, 16, 6, 0, 0, 11, 32, 39, 92, 92, 39, 32, 11, 0, 0, 16, 70, 102, 270, 366, 270, 102, 70, 16, 0, 0, 22, 135, 298, 1262, 1592, 1592, 1262, 298, 135, 22, 0, 0, 37, 293
Offset: 1

Views

Author

R. H. Hardin, Mar 04 2018

Keywords

Comments

Table starts
.0..0..0...0....0.....0......0.......0........0.........0...........0
.0..1..1...1....3.....2......6.......6.......11........16..........22
.0..1..0...3....3.....8.....16......32.......70.......135.........293
.0..1..3...3....4....22.....39.....102......298.......833........2105
.0..3..3...4...32....92....270....1262.....3561.....13976.......48859
.0..2..8..22...92...366...1592....6925....36101....161645......762469
.0..6.16..39..270..1592..12042...75739...490425...3084820....19634393
.0..6.32.102.1262..6925..75739..729062..5841423..53750463...469053654
.0.11.70.298.3561.36101.490425.5841423.70536528.833035233.10021999204

Examples

			All solutions for n=5 k=4
..0..0..0..0. .0..0..1..1. .0..0..1..1. .0..0..1..1
..0..1..0..0. .0..1..1..0. .0..1..0..1. .0..0..1..0
..1..1..1..1. .0..0..0..0. .1..0..0..1. .1..1..0..0
..0..0..1..0. .0..1..1..0. .1..0..1..0. .1..0..1..1
..0..0..0..0. .1..1..0..0. .1..1..0..0. .0..0..1..1
		

Crossrefs

Column 2 is A062200(n-2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-2) +a(n-3) -a(n-4)
k=3: [order 14]
k=4: [order 43] for n>45

A062203 Number of compositions of n such that two adjacent parts are not equal modulo 5.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 14, 21, 38, 65, 110, 195, 329, 564, 975, 1675, 2885, 4950, 8503, 14627, 25158, 43255, 74325, 127775, 219662, 377662, 649313, 1116085, 1918690, 3298498, 5670521, 9748641, 16758575, 28809772, 49527786, 85143986, 146373609
Offset: 0

Views

Author

Vladeta Jovovic, Jun 13 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.4.13).

Crossrefs

Formula

G.f.: -(x^5-x-1)*(x^5-x^2-1)*(x^5-x^3-1)*(x^5-x^4-1) / (x^25 -x^24-x^23 -3*x^20+3*x^19 +3*x^18+x^17 +x^16+9*x^15 -5*x^14-5*x^13 -5*x^12-5*x^11 -9*x^10+2*x^9 +2*x^8+4*x^7 +4*x^6+7*x^5 +x^4+x^3-1). Generally, g.f. for the number of compositions of n such that two adjacent parts are not equal modulo p is 1/(1-Sum_{i=1..p} x^i/(1+x^i-x^p)).

A062202 Number of compositions of n such that two adjacent parts are not equal modulo 4.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 22, 33, 57, 103, 169, 277, 479, 824, 1368, 2306, 3941, 6657, 11206, 18998, 32194, 54325, 91880, 155633, 263120, 444674, 752545, 1273278, 2152704, 3640801, 6159723, 10418147, 17618849, 29802480, 50410743, 85259765
Offset: 0

Views

Author

Vladeta Jovovic, Jun 13 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problem 2.4.13).

Crossrefs

Formula

G.f.: -(x^4-x-1)*(x^4-x^2-1)*(x^4-x^3-1)/(x^16-x^15-x^14-3*x^12+3*x^11+x^10+2*x^9+6*x^8-x^7-3*x^6-2*x^5-5*x^4-x^3+1). Generally, g.f. for the number of compositions of n such that two adjacent parts are not equal modulo p is 1/(1-Sum_{i=1..p} x^i/(1+x^i-x^p)).

A242510 Number of n-length words on {1,2,3} such that the maximal blocks (runs) of 1's have odd length, the maximal blocks of 2's have even length and the maximal blocks of 3's have odd length.

Original entry on oeis.org

1, 2, 3, 8, 15, 32, 67, 138, 289, 600, 1249, 2600, 5409, 11258, 23427, 48752, 101455, 211128, 439363, 914322, 1902721, 3959600, 8240001, 17147600, 35684481, 74260082, 154536643, 321593688, 669242575, 1392706512, 2898248707
Offset: 0

Views

Author

Geoffrey Critzer, May 16 2014

Keywords

Examples

			a(3)=8 because we have: 111, 122, 131, 221, 223, 313, 322, 333.
		

Crossrefs

Programs

  • Mathematica
    n=3;nn=30;CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i]),{i,1,n}])/.Join[Table[v[i]->z/(1-z^2),{i,1,n,2}],Table[v[i]->z^2/(1-z^2),{i,2,n,2}]],{z,0,nn}],z]
    (* Changing n=3 at the beginning of this code to n = k, (for k a positive integer) will return the number of n-length words on {1,2,...,k} where the maximal run lengths of odd integers are odd and the maximal run lengths of even integers are even. *)

Formula

G.f.: (1 + x - x^2)/(1 - x - 2*x^2 - x^3 +x^4).
a(n) = a(n-1) +2*a(n-2) +a(n-3) -a(n-4). - Fung Lam, May 18 2014

A242536 Number of n-length words on {1,2,3,4} such that the maximal runs of identical odd integers are of odd length and the maximal runs of identical even integers are of even length.

Original entry on oeis.org

1, 2, 4, 12, 26, 66, 160, 386, 946, 2292, 5582, 13578, 33016, 80330, 195370, 475236, 1155974, 2811762, 6839416, 16636178, 40466002, 98429844, 239421374, 582370554, 1416562360, 3445657082, 8381242522, 20386597380, 49588514390, 120619477410, 293395730296
Offset: 0

Views

Author

Geoffrey Critzer, May 17 2014

Keywords

Examples

			a(3)=12 because we have: 111, 122, 131, 144, 221, 223, 313, 322, 333, 344, 441, 443.
		

Crossrefs

Programs

  • Mathematica
    n=4;nn=30;CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i]),{i,1,n}])/.Join[Table[v[i]->z/(1-z^2),{i,1,n,2}],Table[v[i]->z^2/(1-z^2),{i,2,n,2}]],{z,0,nn}],z]

Formula

G.f.: (1 + x - x^2)/(1 - x -3*x^2 - 2*x^3 + 2*x^4).
a(n) = a(n-1) +3*a(n-2) +2*a(n-3) -2*a(n-4). - Fung Lam, May 18 2014

A242537 Number of n-length words on {1,2,3,4,5} such that the maximal runs of identical odd integers are of odd length and the maximal runs of identical even integers are of even length.

Original entry on oeis.org

1, 3, 8, 27, 82, 255, 794, 2463, 7654, 23775, 73850, 229407, 712606, 2213583, 6876098, 21359343, 66348934, 206100927, 640215146, 1988712255, 6177573934, 19189513071, 59608742162, 185163746895, 575177598550, 1786684895967, 5550012597050, 17240107585311, 53553267556606, 166353513271311, 516747019188962
Offset: 0

Views

Author

Geoffrey Critzer, May 17 2014

Keywords

Examples

			a(3)=27 because we have: 111, 122, 131, 135, 144, 151, 153, 221, 223, 225, 313, 315, 322, 333, 344, 351, 353, 441, 443, 445, 513, 515, 522, 531, 535, 544, 555.
		

Crossrefs

Programs

  • Mathematica
    n=5;nn=30;CoefficientList[Series[1/(1-Sum[v[i]/(1+v[i]),{i,1,n}])/.Join[Table[v[i]->z/(1-z^2),{i,1,n,2}],Table[v[i]->z^2/(1-z^2),{i,2,n,2}]],{z,0,nn}],z]

Formula

G.f.: (1 + x - x^2)/(1 - 2*x - 3*x^2 - 2*x^3 + 2*x^4).
a(n) = 2*a(n-1) +3*a(n-2) +2*a(n-3) -2*a(n-4). - Fung Lam, May 18 2014

A348478 Number of compositions of n into exactly n nonnegative parts such that each positive i-th part has the same parity as i.

Original entry on oeis.org

1, 1, 1, 4, 7, 23, 55, 164, 407, 1235, 3051, 9432, 23431, 72989, 182624, 571384, 1436855, 4511979, 11387467, 35866100, 90782837, 286622226, 727226578, 2300578392, 5848776767, 18533394763, 47197285045, 149769168304, 381956145802, 1213526310665, 3098742448230
Offset: 0

Views

Author

Alois P. Heinz, Oct 20 2021

Keywords

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 1: [0,2].
a(3) = 4: [1,2,0], [0,2,1], [3,0,0], [0,0,3].
a(4) = 7: [1,2,1,0], [1,0,1,2], [3,0,1,0], [1,0,3,0], [0,2,0,2], [0,4,0,0], [0,0,0,4].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(t=0, 1-signum(n),
          add(`if`(j=0 or (t-j)::even, b(n-j, t-1), 0), j=0..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..33);
  • Mathematica
    b[n_, t_] := b[n, t] = If[t == 0, 1 - Sign[n],
         Sum[If[j == 0 || EvenQ[t - j], b[n - j, t - 1], 0], {j, 0, n}]];
    a[n_] :=  b[n, n];
    Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Apr 14 2022, after Alois P. Heinz *)

A062201 Number of compositions of n such that two adjacent parts are not equal modulo 3.

Original entry on oeis.org

1, 1, 1, 3, 4, 5, 13, 17, 23, 54, 75, 106, 224, 329, 482, 942, 1436, 2163, 4004, 6255, 9619, 17144, 27220, 42513, 73785, 118402, 187082, 318715, 514958, 820744, 1380185, 2239747, 3592811, 5987313, 9742606, 15703097, 26004453, 42385083
Offset: 0

Views

Author

Vladeta Jovovic, Jun 13 2001

Keywords

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(Problem 2.4.13).

Crossrefs

Formula

G.f.: -(x^3-x-1)*(x^3-x^2-1)/(x^9-x^8-x^7-2*x^6+x^5+x^4+4*x^3-1). Generally, g.f. for the number of compositions of n such that two adjacent parts are not equal modulo p is 1/(1-Sum_{i=1..p} x^i/(1+x^i-x^p)).

A098157 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n+1,2k).

Original entry on oeis.org

1, 1, 1, 0, 3, 1, 0, 1, 6, 1, 0, 0, 5, 10, 1, 0, 0, 1, 15, 15, 1, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 1, 28, 70, 28, 1, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 1, 45, 210, 210, 45, 1, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0, 1, 66, 495, 924, 495, 66, 1, 0, 0, 0, 0, 0, 0, 13, 286, 1287, 1716, 715, 78, 1
Offset: 0

Views

Author

Paul Barry, Aug 29 2004

Keywords

Comments

Row sums are A000079. Diagonal sums are A062200. Inverse is A065547, less the first column.
Number of permutations of length n avoiding simultaneously the patterns 123 and 132 with k descents. A descent in a permutation a(1)a(2)...a(n) is position i such that a(i)>a(i+1). - Tian Han, Nov 16 2023

Examples

			Rows begin:
 {1},
 {1,1},
 {0,3,1},
 {0,1,6,1},
 {0,0,5,10,1},
 {0,0,1,15,15,1},
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n+1, 2(n-k)],{n,0,11},{k,0,n}]//Flatten (* Stefano Spezia, Nov 16 2023 *)

Formula

T(n, k) = binomial(n+1, 2(n-k)) with 0 <= k <= n.
G.f.: (1 + x - q*x)/(1 - 2*q*x - q*x^2 + q^2*x^2). - Tian Han, Nov 16 2023
Showing 1-10 of 10 results.