cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062237 Numbers k which are (sum of digits of k) concatenated with (product of digits of k).

Original entry on oeis.org

0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 119, 1236, 19135, 19144, 261296, 3634992, 43139968
Offset: 1

Views

Author

Erich Friedman, Jun 30 2001

Keywords

Comments

For a d-digit number with d >= 88, the sum and product of the digits together have fewer than d digits. So every element of this sequence has 87 or fewer digits, hence it is finite. - David W. Wilson, Apr 28 2005
Fixed points of the map A380873: concatenate sum and product of digits. - M. F. Hasler, Apr 01 2025

Examples

			1236 has sum of digits 12 and product of digits 36.
		

Crossrefs

Cf. A007953 (sum of digs), A007954 (product of digs), A038364, A038369, A066282, A380873, A380872 (trajectories under map).

Programs

  • Mathematica
    sdpdQ[n_]:=Module[{idn=IntegerDigits[n],s,p},s=Total[idn];p=Times@@idn;n==FromDigits[Join[IntegerDigits[s],IntegerDigits[p]]]]; Select[Range[44*10^6],sdpdQ] (* Harvey P. Dale, Nov 23 2024 *)
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_permutations as mp
    from itertools import count, islice, combinations_with_replacement as mc
    def c(s):
        d = list(map(int, s))
        return sorted(s) == sorted(str(sum(d)) + str(prod(d)))
    def ok(s):
        d = list(map(int, s))
        return s[0] != '0' and "".join(s) == str(sum(d)) + str(prod(d))
    def nd(d): yield from ("".join(m) for m in mc("0123456789", d))
    def b(): yield from (s for d in count(1) for s in nd(d) if c(s))
    def a(): yield from (int("".join(p)) for s in b() for p in mp(s) if ok(p))
    print(list(islice(a(), 16))) # Michael S. Branicky, Jun 30 2022

Extensions

More terms from Harvey P. Dale, Jul 04 2001
More terms from David W. Wilson, Apr 28 2005; he reports on May 03 2005 that there are no further terms.
Offset corrected by Altug Alkan, Apr 10 2018