cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A045535 Least negative pseudosquare modulo the first n odd primes.

Original entry on oeis.org

7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 118271, 366791, 366791, 2155919, 2155919, 2155919, 6077111, 6077111, 98538359, 120293879, 131486759, 131486759, 508095719, 2570169839, 2570169839, 2570169839, 2570169839, 2570169839, 2570169839, 328878692999, 328878692999, 513928659191, 844276851239
Offset: 0

Views

Author

Keywords

Comments

a(n) is the smallest positive integer m such that m == 7 (mod 8) and for the first n odd primes p, -m is a (nonzero) quadratic residue mod p.

References

  • N. D. Bronson and D. A. Buell, Congruential sieves on FPGA computers, pp. 547-551 of Mathematics of Computation 1943-1993 (Vancouver, 1993), Proc. Symp. Appl. Math., Vol. 48, Amer. Math. Soc. 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • PARI
    {A045535 = (n,m=7)->until(!m+=8,for(i=2,n+1,m%prime(i)||next(2);issquare(Mod(-m,prime(i)))||next(2));return(m))} \\ Starting value (e.g., a(n-1); must be in 7+8Z) may be given as 2nd arg. - M. F. Hasler, Oct 24 2013

Extensions

The Bronson-Buell reference gives terms through 227. The Math. Comp. version is erroneous.
Edited by Don Reble, Nov 14 2006
Corrected link to OEIS index, following a remark by Don Reble. Values a(0..21) double-checked. - M. F. Hasler, Oct 24 2013
a(27)-a(28) from Jinyuan Wang, Mar 24 2020
More terms from Bert Dobbelaere, Feb 28 2021

A112084 Column 2 of A112070.

Original entry on oeis.org

5, 9, 25, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 118271, 701399, 366791, 2704679, 2954591, 2155919, 13845841, 6077111, 25411681, 28398241
Offset: 1

Views

Author

Antti Karttunen, Aug 28 2005

Keywords

Comments

Note the subsequence equal to the portion of A045535 / A062241 and also the non-monotone drops present, like the one from a(13)=701399 to a(14)=366791.
An independent recomputation with another software, e.g. Mathematica, would be welcome.

Crossrefs

Row 2 of A112071. a(n) = A005408(A112083(n)).

A196942 a(n) is the prime order of sequence A196941.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 2

Views

Author

Lei Zhou, Oct 07 2011

Keywords

Comments

Assuming 1 is the 0th prime, as what in Mathematica: PrimePi[1] = 0.
So far the first occurrence of this sequence agree with A062241 and A045535. Is this a coincidence or a theorem?

Examples

			A196941(3) = 2, which is the first prime number, so a(3) = 1;
		

Crossrefs

Programs

  • Mathematica
    FactorSet[seed_] := Module[{fset2, a, l, i}, a = FactorInteger[seed]; l = Length[a]; fset2 = {}; Do[fset2 = Union[fset2, {a[[i]][[1]]}], {i, 1, l}]; fset2]; Table[min = n; Do[r = n - k; s = Union[FactorSet[k], FactorSet[r]]; If[a = s[[Length[s]]]; a < min, min = a], {k, 1, IntegerPart[n/2]}]; PrimePi[min], {n, 2, 88}]

A323051 Numbers that cannot be written as a sum of two or fewer 11-smooth numbers (A051038).

Original entry on oeis.org

479, 958, 1151, 1319, 1437, 1559, 1679, 1916, 2302, 2351, 2395, 2638, 2874, 2999, 3013, 3071, 3118, 3353, 3358, 3453, 3671, 3737, 3769, 3832, 3911, 3957, 4199, 4309, 4311, 4604, 4677, 4702, 4703, 4751, 4790, 4919, 5037, 5057, 5269, 5276, 5389, 5443, 5519, 5597, 5683
Offset: 1

Views

Author

Carlos Alves, Jan 03 2019

Keywords

Comments

Similar to A323046 (3-smooth), A323049 (5-smooth) or A323050 (7-smooth).
This sequence is a subsequence of A323046, A323049, and A323050.
Notice that A045535(4) = a(1) = 479.

Crossrefs

See A323046 (3-smooth), A323049 (5-smooth) or A323050 (7-smooth). Cf. A051038, A045535 (or A062241).

Programs

  • Mathematica
    f[n_] := Union@Flatten@Table[2^a*3^b*5^c*7^d, {a, 0, Log2[n]}, {b, 0, Log[3, n/2^a]}, {c, 0, Log[5, n/(2^a*3^b)]}, {d, 0, Log[7, n/(2^a*3^b*5^c)]}];
    b = Block[{nn = 3000, s}, s = f[nn]; {0, 1}~Join~
        Select[Union@Flatten@Outer[Plus, s, s], # <= nn &]];
    Complement[Range[3000], b]
Showing 1-4 of 4 results.