1, 4, 9, 20, 64, 92, 246, 752, 1289, 2084, 3383, 31284, 271259, 618525, 1389315, 2228197, 2914847, 6857528, 7457772, 141236709, 366883983, 1034128714, 3690981956, 4965932454, 7863515482, 19824941433, 195348751601, 292557888940, 2296552237422
Offset: 1
A062241
Smallest integer >= 2 that is not the sum of 2 positive integers whose prime factors are all <= p(n), the n-th prime.
Original entry on oeis.org
3, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 118271, 366791, 366791, 2155919, 2155919, 2155919, 6077111, 6077111, 98538359, 120293879, 131486759, 131486759, 508095719, 2570169839, 2570169839, 2570169839, 2570169839, 2570169839, 2570169839
Offset: 0
Richard C. Schroeppel, Jun 27 2001
a(1): 2=1+1, 3=1+2, 4=2+2, 5=1+4, 6=2+4, but 7 cannot be written as the sum of two positive integers whose prime factors are all <= 2, so a(1) = 7. a(2): 7=3+4, 8=4+4, 9=1+8, ..., 22=4+18, but 23 cannot be so written, so a(2) = 23.
So far it agrees with
A045535. Is this a coincidence or a theorem?
A147969
Smallest prime p modulo which numbers 1,2,...,n are quadratic residues.
Original entry on oeis.org
2, 7, 23, 23, 71, 71, 311, 311, 311, 311, 479, 479, 1559, 1559, 1559, 1559, 5711, 5711, 10559, 10559, 10559, 10559, 18191, 18191, 18191, 18191, 18191, 18191, 31391, 31391, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791
Offset: 1
-
a(n)=forprime(p=2,default(primelimit),forprime(i=2,n, if(kronecker(i,p)<1,next(2)));return(p)) \\ Charles R Greathouse IV, Apr 06 2012
A147970
Primes corresponding to the records in the sequence of smallest positive quadratic nonresidues (A053760).
Original entry on oeis.org
2, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 131486759, 2929911599, 7979490791, 23616331489, 89206899239, 121560956039, 196265095009, 513928659191, 5528920734431, 8402847753431, 70864718555231
Offset: 1
A147972
Smallest prime p modulo which the first n primes are nonzero quadratic residues.
Original entry on oeis.org
7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 366791, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 120293879, 131486759, 131486759, 2929911599, 2929911599, 7979490791, 23616331489, 23616331489, 89206899239, 121560956039, 196265095009, 196265095009, 513928659191, 5528920734431, 8402847753431, 8402847753431, 8402847753431, 70864718555231
Offset: 1
-
(*version 7.0*)m=1;P=7;Lst={p};While[m<25,m++;S=Prime[Range[m]];While[MemberQ[JacobiSymbol[S,p],-1],p=NextPrime[p]];Lst=Append[Lst,P]];Lst (* Emmanuel Vantieghem, Jan 31 2012 *)
-
t=2;forprime(p=2,1e9,forprime(q=2,t,if(kronecker(q,p)<1,next(2)));print1(p", ");t=nextprime(t+1);p--) \\ Charles R Greathouse IV, Jan 31 2012
Original entry on oeis.org
5, 9, 25, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 118271, 701399, 366791, 2704679, 2954591, 2155919, 13845841, 6077111, 25411681, 28398241
Offset: 1
Comments