A062258 Number of (0,1)-strings of length n not containing the substring 0100100.
1, 2, 4, 8, 16, 32, 64, 127, 252, 500, 993, 1972, 3916, 7776, 15441, 30662, 60887, 120906, 240088, 476753, 946709, 1879921, 3733040, 7412858, 14720031, 29230199, 58043664, 115259801, 228876346, 454489608, 902499570, 1792132228
Offset: 0
Keywords
References
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.8.2).
- Reilly, J. W.; Stanton, R. G. Variable strings with a fixed substring. Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), pp. 483--494. Louisiana State Univ., Baton Rouge, La.,1971. MR0319775 (47 #8317) [From N. J. A. Sloane, Apr 02 2012]
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2,0,-1,1).
Programs
-
Mathematica
CoefficientList[Series[(1+x^3+x^6)/(1-2x+x^3-2x^4+x^6-x^7),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2,0,-1,1},{1,2,4,8,16,32,64},40] (* Harvey P. Dale, Aug 10 2021 *)
Formula
G.f.: (1 + x^3 + x^6)/(1 - 2*x + x^3 - 2*x^4 + x^6 - x^7).
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) - a(n-6) + a(n-7).
Comments