cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062258 Number of (0,1)-strings of length n not containing the substring 0100100.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 252, 500, 993, 1972, 3916, 7776, 15441, 30662, 60887, 120906, 240088, 476753, 946709, 1879921, 3733040, 7412858, 14720031, 29230199, 58043664, 115259801, 228876346, 454489608, 902499570, 1792132228
Offset: 0

Views

Author

Vladeta Jovovic, Jun 14 2001

Keywords

Comments

Also, number of (0,1)-strings of length n not containing the substring 1001001. - N. J. A. Sloane, Apr 02 2012

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (Problem 2.8.2).
  • Reilly, J. W.; Stanton, R. G. Variable strings with a fixed substring. Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), pp. 483--494. Louisiana State Univ., Baton Rouge, La.,1971. MR0319775 (47 #8317) [From N. J. A. Sloane, Apr 02 2012]

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x^3+x^6)/(1-2x+x^3-2x^4+x^6-x^7),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2,0,-1,1},{1,2,4,8,16,32,64},40] (* Harvey P. Dale, Aug 10 2021 *)

Formula

G.f.: (1 + x^3 + x^6)/(1 - 2*x + x^3 - 2*x^4 + x^6 - x^7).
a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) - a(n-6) + a(n-7).