cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062266 Row sums of unsigned triangle A062140 (generalized a=4 Laguerre).

Original entry on oeis.org

1, 6, 43, 358, 3393, 36046, 424051, 5470158, 76751233, 1163391958, 18941512731, 329604456886, 6103575192193, 119823200043678, 2485452283923043, 54309931242376606, 1246803623807490561, 29999359707124127398, 754865494585690965643, 19824604328577866107398
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Factorial(n)*Binomial(n+4,n-m)/Factorial(m): m in [0..n]]): n in [0..20]]; // G. C. Greubel, Feb 06 2018
    
  • Maple
    A062266:= n -> n!*simplify(LaguerreL(n,4,-1), 'LaguerreL');
    seq(A062266(n), n = 0 .. 30); # G. C. Greubel, Mar 10 2021
  • Mathematica
    Table[n!*SeriesCoefficient[E^(x/(1-x))/(1-x)^5,{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 11 2012 *)
    With[{nn=20},CoefficientList[Series[Exp[x/(1-x)]/(1-x)^5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 11 2025 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(x/(1-x))/(1-x)^5)) \\ Joerg Arndt, May 06 2013
    
  • PARI
    a(n) = vecsum(apply(abs,Vec(n!*pollaguerre(n, 4)))); \\ Michel Marcus, Feb 06 2021
    
  • Sage
    [factorial(n)*gen_laguerre(n, 4, -1) for n in (0..30)] # G. C. Greubel, Mar 10 2021

Formula

E.g.f.: exp(x/(1-x))/(1-x)^5.
a(n) = Sum_{m=0..n} n!*binomial(n+4, n-m)/m!.
a(n) = 2*(n+2)*a(n-1) - (n-1)*(n+3)*a(n-2). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ exp(2*sqrt(n)-n-1/2)*n^(n+9/4)/sqrt(2). - Vaclav Kotesovec, Oct 11 2012
a(n) = n!*LaguerreL(n, 4, -1). - G. C. Greubel, Mar 10 2021