A062293 Smallest multiple k*n of n which has even digits and is a palindrome or becomes a palindrome when 0's are added on the left (e.g., 10 becomes 010, which is a palindrome).
0, 2, 2, 6, 4, 20, 6, 686, 8, 666, 20, 22, 60, 2002, 686, 60, 80, 646, 666, 646, 20, 6006, 22, 828, 600, 200, 2002, 8886888, 868, 464, 60, 868, 800, 66, 646, 6860, 828, 222, 646, 6006, 40, 22222, 6006, 68886, 44, 6660, 828, 282, 4224, 686, 200, 42024, 4004, 424, 8886888, 220, 8008, 68286, 464, 68086, 60
Offset: 0
Examples
a(7) = 686 as 686 = 98*7 is the smallest palindrome multiple of 7 with even digits.
Programs
-
ARIBAS
stop := 500000; for n := 0 to 60 do k := 1; test := true; while test and k < stop do m := omit_trailzeros(n*k); if test := not all_even(m) or m <> int_reverse(m) then inc(k); end; end; if k < stop then write(n*k," "); else write(-1," "); end; end;
-
Haskell
a062293 0 = 0 a062293 n = head [x | x <- map (* n) [1..], all (`elem` "02468") $ show x, a136522 (a004151 x) == 1] -- Reinhard Zumkeller, Feb 01 2012
Extensions
Corrected and extended by Klaus Brockhaus, Jun 21 2001
Comments