cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062282 Number of permutations of n elements with an even number of fixed points.

Original entry on oeis.org

1, 0, 2, 2, 16, 64, 416, 2848, 22912, 205952, 2060032, 22659328, 271913984, 3534877696, 49488295936, 742324422656, 11877190795264, 201912243453952, 3634420382302208, 69053987263479808, 1381079745270120448, 29002674650671480832, 638058842314774675456
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 04 2001

Keywords

Comments

Let d(n) be the number of derangements of n elements (sequence A000166) then a(n) has the recursion: a(n) = d(n) + C(n,2)*d(n-2) + C(n,4)*d(n-4) + C(n,6)*d(n-6)... = A000166(n) + A000387(n) + A000475(n) + C(n,6)*d(n-6)... The E.g.f. for a(n) is: cosh(x) * exp(-x)/(1-x) and the asymptotic expression for a(n) is: a(n) ~ n! * (1 + 1/e^2)/2 i.e., as n goes to infinity the fraction of permutations that has an even number of fixed points is about (1 + 1/e^2)/2 = 0.567667...

Crossrefs

Programs

  • Mathematica
    nn = 20; d = Exp[-x]/(1 - x); Range[0, nn]! CoefficientList[Series[Cosh[x] d, {x, 0, nn}], x] (* Geoffrey Critzer, Jan 14 2012 *)
    Table[Sum[Sum[(-1)^j * n!/(j!*(2*k)!), {j, 0, n - 2*k}], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Aug 21 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n\2, sum(j=0,n-2*k, (-1)^j*n!/(j!*(2*k)!))), ", ")) \\ G. C. Greubel, Aug 21 2017

Formula

a(n) = Sum_{k=0..[n/2]} Sum_{l=0..(n-2*k)} (-1)^l * n!/((2*k)! * l!).
More generally, e.g.f. for number of degree-n permutations with an even number of k-cycles is cosh(x^k/k)*exp(-x^k/k)/(1-x). - Vladeta Jovovic, Jan 31 2006
E.g.f.: 1/(1-x)/(x*E(0)+1), where E(k) = 1 - x^2/( x^2 + (2*k+1)*(2*k+3)/E(k+1) ); (continued fraction ). - Sergei N. Gladkovskii, Dec 29 2013
Conjecture: a(n) = Sum_{k=0..n} A008290(n, k)*A059841(k). - John Keith, Jun 30 2020

Extensions

More terms from Vladeta Jovovic, Jul 05 2001