A062320 Nonsquarefree numbers squared. A013929(n)^2.
16, 64, 81, 144, 256, 324, 400, 576, 625, 729, 784, 1024, 1296, 1600, 1936, 2025, 2304, 2401, 2500, 2704, 2916, 3136, 3600, 3969, 4096, 4624, 5184, 5625, 5776, 6400, 6561, 7056, 7744, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a062320 = (^ 2) . a013929 -- Reinhard Zumkeller, Sep 03 2015
-
PARI
for(n=1,55, if(issquarefree(n), n+1,print(n^2)))
-
PARI
n=-1; for (m=1, 10^9, if (!issquarefree(m), write("b062320.txt", n++, " ", m^2); if (n==1000, break))) \\ Harry J. Smith, Aug 04 2009
-
PARI
is(n)=issquare(n,&n) && !issquarefree(n) \\ Charles R Greathouse IV, Sep 18 2015
-
Python
from math import isqrt from sympy import mobius def A062320(n): def f(x): return n+1+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f)**2 # Chai Wah Wu, Aug 31 2024
Formula
Sum_{n>=1} 1/a(n) = Pi^2/6 - 15/Pi^2. - Amiram Eldar, Jul 16 2020
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 11 2001
Offset corrected by Andrew Howroyd, Sep 18 2024
Comments