A062324 Primes p such that p^2 + 4 is also prime.
3, 5, 7, 13, 17, 37, 47, 67, 73, 97, 103, 137, 163, 167, 193, 233, 277, 293, 307, 313, 317, 347, 373, 463, 487, 503, 547, 577, 593, 607, 613, 677, 743, 787, 823, 827, 853, 883, 953, 967, 983, 997, 1087, 1117, 1123, 1237, 1367, 1423, 1447, 1523, 1543, 1613
Offset: 1
Examples
a(1) = 3 because 3^2 + 4 = 13 is prime, a(4) = 13 because 13^2 + 4 = 173 is prime. - _Zak Seidov_, Nov 04 2013
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Yang Ji, Several special cases of a square problem, arXiv:2105.05250 [math.GM], 2021.
Programs
-
Mathematica
Select[Prime/@Range[300], PrimeQ[ #^2+4]&]
-
PARI
{ n=0; forprime (p=2, 5*10^5, if (isprime(p^2 + 4), write("b062324.txt", n++, " ", p); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 04 2009
Formula
a(n) = sqrt(A045637(n) - 4). - Zak Seidov, Nov 04 2013
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2001
Edited by Dean Hickerson, Dec 10 2002
Comments