cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062341 Primes whose sum of digits is 5.

Original entry on oeis.org

5, 23, 41, 113, 131, 311, 401, 1013, 1031, 1103, 1301, 2003, 2111, 3011, 4001, 10103, 10211, 10301, 11003, 12011, 12101, 13001, 20021, 20201, 21011, 21101, 30011, 100103, 101021, 101111, 102101, 103001, 120011, 121001, 200003, 200201, 201011, 201101, 202001
Offset: 1

Views

Author

Amarnath Murthy, Jun 21 2001

Keywords

Examples

			1301 belongs to the sequence since it is a prime with sum of digits = 5.
		

Crossrefs

Cf. A000040 (primes), A007953 (sum of digits), A052219 (digit sum = 5).
Cf. A062339 (same for digit sum s = 4), A062337 (s = 7), and others listed in A244918 (s = 68).
Subsequence of A062340 (primes with sum of digits divisible by 5).

Programs

  • Magma
    [p: p in PrimesUpTo(250000) | &+Intseq(p) eq 5]; // Vincenzo Librandi, Jul 08 2014
    
  • Maple
    T:= n-> `if`(n=1, 5, sort(select(isprime, [seq(seq(seq(
        10^(n-1)+1+10^i+10^j+10^k, k=1..j), j=1..i), i=1..n-1),
        seq(10^(n-1)+3+10^i, i=1..n-1)]))[]):
    seq(T(n), n=1..8);  # Alois P. Heinz, Dec 28 2015
  • Mathematica
    Select[Prime[Range[20000]],Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 24 2013 *)
  • PARI
    \\ From M. F. Hasler, Mar 09 2022: (Start)
    select( {is_A062341(p,s=5)=sumdigits(p)==s&&isprime(p)}, primes([1,10^6])) \\ 2nd optional parameter for similar sequences with other digit sums.
    A062341_upto_length(L,s=5,a=List(),u=[10^k|k<-[0..L-1]])={forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Set(a)} \\ (End)
  • Python
    from sympy import primerange as primes
    def ok(p): return sum(map(int, str(p))) == 5
    print(list(filter(ok, primes(1, 202002)))) # Michael S. Branicky, May 23 2021
    

Formula

Intersection of A000040 (primes) with A052219 (digit sum 5). - M. F. Hasler, Mar 09 2022

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001