A062341 Primes whose sum of digits is 5.
5, 23, 41, 113, 131, 311, 401, 1013, 1031, 1103, 1301, 2003, 2111, 3011, 4001, 10103, 10211, 10301, 11003, 12011, 12101, 13001, 20021, 20201, 21011, 21101, 30011, 100103, 101021, 101111, 102101, 103001, 120011, 121001, 200003, 200201, 201011, 201101, 202001
Offset: 1
Examples
1301 belongs to the sequence since it is a prime with sum of digits = 5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..14312 (first 100 terms from Harvey P. Dale)
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(250000) | &+Intseq(p) eq 5]; // Vincenzo Librandi, Jul 08 2014
-
Maple
T:= n-> `if`(n=1, 5, sort(select(isprime, [seq(seq(seq( 10^(n-1)+1+10^i+10^j+10^k, k=1..j), j=1..i), i=1..n-1), seq(10^(n-1)+3+10^i, i=1..n-1)]))[]): seq(T(n), n=1..8); # Alois P. Heinz, Dec 28 2015
-
Mathematica
Select[Prime[Range[20000]],Total[IntegerDigits[#]]==5&] (* Harvey P. Dale, Nov 24 2013 *)
-
PARI
\\ From M. F. Hasler, Mar 09 2022: (Start) select( {is_A062341(p,s=5)=sumdigits(p)==s&&isprime(p)}, primes([1,10^6])) \\ 2nd optional parameter for similar sequences with other digit sums. A062341_upto_length(L,s=5,a=List(),u=[10^k|k<-[0..L-1]])={forvec(d=[[1,L]|i<-[1..s]], isprime(p=vecsum(vecextract(u,d))) && listput(a,p),1); Set(a)} \\ (End)
-
Python
from sympy import primerange as primes def ok(p): return sum(map(int, str(p))) == 5 print(list(filter(ok, primes(1, 202002)))) # Michael S. Branicky, May 23 2021
Formula
Extensions
Corrected and extended by Larry Reeves (larryr(AT)acm.org), Jul 06 2001