cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062344 Triangle of binomial(2*n, k) with n >= k.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 15, 20, 1, 8, 28, 56, 70, 1, 10, 45, 120, 210, 252, 1, 12, 66, 220, 495, 792, 924, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 48620
Offset: 0

Views

Author

Henry Bottomley, Jul 06 2001

Keywords

Comments

From Wolfdieter Lang, Sep 19 2012: (Start)
The triangle a(n,k) appears in the formula F(2*l+1)^(2*n) = (sum(a(n,k)*L(2*(n-k)*(2*l+1)),k=0..n-1) + a(n,n))/5^n, n>=0, l>=0, with F=A000045 (Fibonacci) and L=A000032 (Lucas).
The signed triangle as(n,k):=a(n,k)*(-1)^k appears in the formula F(2*l)^(2*n) = (sum(as(n,k)*L(4*(n-k)*l),k=0..n-1) + as(n,n))/5^n, n>=0, l>=0. Proof with the Binet-de Moivre formula for F and L and the binomial formula. (End)

Examples

			Rows start
  (1),
  (1,2),
  (1,4,6),
  (1,6,15,20)
  etc.
Row n=2, (1,4,6):
F(2*l+1)^4 = (1*L(4*(2*l+1)) + 4*L(2*(2*l+1)) + 6)/25,
F(2*l)^4 = (1*L(8*l) - 4*L(4*l) + 6)/25, l>=0, F=A000045, L=A000032. See a comment above. - _Wolfdieter Lang_, Sep 19 2012
		

Crossrefs

Columns include (sometimes truncated) A000012, A005843, A000384, A002492, A053134 etc. Right hand side includes A000984, A001791, A002694, A002696 etc. Row sums are A032443. Row alternate differences (e.g., 6-4+1=3 or 20-15+6-1=10) are A001700.
Cf. A122366.
a(2n,n) gives A005810.

Programs

  • Magma
    [[Binomial(2*n, k): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Jun 28 2018
  • Mathematica
    Flatten[Table[Binomial[2 n, k], {n, 0, 20}, {k, 0, n}]] (* G. C. Greubel, Jun 28 2018 *)
  • Maxima
    create_list(binomial(2*n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
    
  • PARI
    for(n=0, 20, for(k=0, n, print1(binomial(2*n, k), ", "))) \\ G. C. Greubel, Jun 28 2018
    

Formula

a(n,k) = a(n,k-1)*((2n+1)/k-1) with a(n,0)=1.
G.f.: 1/((1-sqrt(1-4*x*y))^4/(16*x*y^2) + sqrt(1-4*x*y) - x). - Vladimir Kruchinin, Jan 26 2021