A062344 Triangle of binomial(2*n, k) with n >= k.
1, 1, 2, 1, 4, 6, 1, 6, 15, 20, 1, 8, 28, 56, 70, 1, 10, 45, 120, 210, 252, 1, 12, 66, 220, 495, 792, 924, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 48620
Offset: 0
Examples
Rows start (1), (1,2), (1,4,6), (1,6,15,20) etc. Row n=2, (1,4,6): F(2*l+1)^4 = (1*L(4*(2*l+1)) + 4*L(2*(2*l+1)) + 6)/25, F(2*l)^4 = (1*L(8*l) - 4*L(4*l) + 6)/25, l>=0, F=A000045, L=A000032. See a comment above. - _Wolfdieter Lang_, Sep 19 2012
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- E. H. M. Brietzke, An identity of Andrews and a new method for the Riordan array proof of combinatorial identities, Discrete Math., 308 (2008), 4246-4262.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Index entries for triangles and arrays related to Pascal's triangle
Crossrefs
Programs
-
Magma
[[Binomial(2*n, k): k in [0..n]]: n in [0..20]]; // G. C. Greubel, Jun 28 2018
-
Mathematica
Flatten[Table[Binomial[2 n, k], {n, 0, 20}, {k, 0, n}]] (* G. C. Greubel, Jun 28 2018 *)
-
Maxima
create_list(binomial(2*n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
for(n=0, 20, for(k=0, n, print1(binomial(2*n, k), ", "))) \\ G. C. Greubel, Jun 28 2018
Formula
a(n,k) = a(n,k-1)*((2n+1)/k-1) with a(n,0)=1.
G.f.: 1/((1-sqrt(1-4*x*y))^4/(16*x*y^2) + sqrt(1-4*x*y) - x). - Vladimir Kruchinin, Jan 26 2021
Comments