A193601
Augmentation of the triangle A062344. See Comments.
Original entry on oeis.org
1, 1, 2, 1, 6, 10, 1, 12, 49, 76, 1, 20, 149, 508, 756, 1, 30, 354, 2082, 6353, 9192, 1, 42, 720, 6484, 32852, 92750, 131406, 1, 56, 1315, 16820, 127365, 580606, 1545757, 2153912, 1, 72, 2219, 38256, 404559, 2706150, 11385058, 28931758, 39768798
Offset: 0
First 5 rows of A193601:
1
1...2
1...6....10
1...12...49...76
1...20...149..508...756
-
p[n_, k_] := Binomial[2 n, k] (* A062344 *)
Table[p[n, k], {n, 0, 5}, {k, 0, n}]
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 6}]] (* A193601 *)
Flatten[Table[v[n], {n, 0, 8}]]
A094527
Triangle T(n,k), read by rows, defined by T(n,k) = binomial(2*n,n-k).
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 15, 6, 1, 70, 56, 28, 8, 1, 252, 210, 120, 45, 10, 1, 924, 792, 495, 220, 66, 12, 1, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1, 48620, 43758, 31824, 18564, 8568, 3060, 816, 153, 18, 1, 184756, 167960
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 2 1
2: 6 4 1
3: 20 15 6 1
4: 70 56 28 8 1
5: 252 210 120 45 10 1
6: 924 792 495 220 66 12 1
7: 3432 3003 2002 1001 364 91 14 1
8: 12870 11440 8008 4368 1820 560 120 16 1
9: 48620 43758 31824 18564 8568 3060 816 153 18 1
10: 184756 167960 125970 77520 38760 15504 4845 1140 190 20 1
... Reformatted ad extended by _Wolfdieter Lang_, Nov 22 2012
From _Paul Barry_, Sep 07 2009: (Start)
Production array is
2, 1,
2, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Nov 22 2012: (Start)
Recurrence from the Riordan A-sequence [1,2,1]: T(4,1) = 56 = 1*T(3,0) + 2*T(3,1) + 1*T(3,2) = 1*20 + 2*15 + 1*6.
Recurrence from the Riordan Z-sequence [2,2]: T(7,0) = 3432 = 2*T(6,0) + 2*T(6,1) = 2*924 + 2*792. See the _Philippe Deléham_ comment above. (End)
- Indranil Ghosh, Rows 0..100 of triangle, flattened
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 19.
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
- Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From _N. J. A. Sloane_, Sep 16 2012
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263
- T. M. Richardson, The Reciprocal Pascal Matrix, arXiv preprint arXiv:1405.6315 [math.CO], 2014.
-
A094527 := proc(n,k)
binomial(2*n,n-k) ;
end proc: # R. J. Mathar, Jun 04 2013
-
T[n_, k_] := Binomial[2*n, n - k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017 *)
A034868
Left half of Pascal's triangle.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 1, 4, 6, 1, 5, 10, 1, 6, 15, 20, 1, 7, 21, 35, 1, 8, 28, 56, 70, 1, 9, 36, 84, 126, 1, 10, 45, 120, 210, 252, 1, 11, 55, 165, 330, 462, 1, 12, 66, 220, 495, 792, 924, 1, 13, 78, 286, 715, 1287, 1716, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 1, 15
Offset: 0
1;
1;
1, 2;
1, 3;
1, 4, 6;
1, 5, 10;
1, 6, 15, 20;
...
-
a034868 n k = a034868_tabf !! n !! k
a034868_row n = a034868_tabf !! n
a034868_tabf = map reverse a034869_tabf
-- Reinhard Zumkeller, improved Dec 20 2015, Jul 27 2012
-
Flatten[ Table[ Binomial[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}]] (* Robert G. Wilson v, May 28 2005 *)
-
for(n=0, 14, for(k=0, floor(n/2), print1(binomial(n, k),", ");); print();) \\ Indranil Ghosh, Mar 31 2017
-
import math
from sympy import binomial
for n in range(15):
print([binomial(n, k) for k in range(int(math.floor(n/2)) + 1)]) # Indranil Ghosh, Mar 31 2017
-
from itertools import count, islice
def A034868_gen(): # generator of terms
yield from (s:=(1,))
for i in count(0):
yield from (s:=(1,)+tuple(s[j]+s[j+1] for j in range(len(s)-1)) + ((s[-1]<<1,) if i&1 else ()))
A034868_list = list(islice(A034868_gen(),30)) # Chai Wah Wu, Oct 17 2023
A122366
Triangle read by rows: T(n,k) = binomial(2*n+1,k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 3, 1, 5, 10, 1, 7, 21, 35, 1, 9, 36, 84, 126, 1, 11, 55, 165, 330, 462, 1, 13, 78, 286, 715, 1287, 1716, 1, 15, 105, 455, 1365, 3003, 5005, 6435, 1, 17, 136, 680, 2380, 6188, 12376, 19448, 24310, 1, 19, 171, 969, 3876, 11628, 27132, 50388, 75582, 92378, 1, 21
Offset: 0
.......... / 1 \ .......... =A062344(0,0)=A034868(0,0),
......... / 1 . \ ......... =T(0,0)=A034868(1,0),
........ / 1 2 . \ ........ =A062344(1,0..1)=A034868(2,0..1),
....... / 1 3 ... \ ....... =T(1,0..1)=A034868(3,0..1),
...... / 1 4 6 ... \ ...... =A062344(2,0..2)=A034868(4,0..2),
..... / 1 5 10 .... \ ..... =T(2,0..2)=A034868(5,0..2),
.... / 1 6 15 20 ... \ .... =A062344(3,0..3)=A034868(6,0..3),
... / 1 7 21 35 ..... \ ... =T(3,0..3)=A034868(7,0..3),
.. / 1 8 28 56 70 .... \ .. =A062344(4,0..4)=A034868(8,0..4),
. / 1 9 36 84 126 ..... \ . =T(4,0..4)=A034868(9,0..4).
Row n=2:[1,5,10] appears in the expansion ((2*x)^5)/2 = T(5,x)+5*T(3,x)+10*T(1,x).
Row n=2:[1,5,10] appears in the expansion ((2*cos(phi))^5)/2 = cos(5*phi)+5*cos(3*phi)+10*cos(1*phi).
The signed row n=2:[1,-5,10] appears in the expansion ((2*sin(phi))^5)/2 = sin(5*phi)-5*sin(3*phi)+10*sin(phi).
The signed row n=2:[1,-5,10] appears therefore in the expansion (4-x^2)^2 = S(4,x)-5*S(2,x)+10*S(0,x).
Triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0 1
1 1 3
2 1 5 10
3 1 7 21 35
4 1 9 36 84 126
5 1 11 55 165 330 462
6 1 13 78 286 715 1287 1716
7 1 15 105 455 1365 3003 5005 6435
8 1 17 136 680 2380 6188 12376 19448 24310
9 1 19 171 969 3876 11628 27132 50388 75582 92378
... - _Wolfdieter Lang_, Sep 18 2012
Row n=2, with F(n)=A000045(n) (Fibonacci number), l >= 0, see a comment above:
F(2*l)^5 = (1*F(10*l) - 5*F(6*l) + 10*F(2*l))/25,
F(2*l+1)^5 = (1*F(10*l+5) + 5*F(6*l+3) + 10*F(2*l+1))/25.
- _Wolfdieter Lang_, Sep 19 2012
- T. J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2nd ed., Wiley, New York, 1990, pp. 54-55, Ex. 1.5.31.
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 795.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for triangles and arrays related to Pascal's triangle
-
a122366 n k = a122366_tabl !! n !! k
a122366_row n = a122366_tabl !! n
a122366_tabl = f 1 a007318_tabl where
f x (_:bs:pss) = (take x bs) : f (x + 1) pss
-- Reinhard Zumkeller, Mar 14 2014
-
T[_, 0] = 1;
T[n_, k_] := T[n, k] = T[n-1, k-1] 2n(2n+1)/(k(2n-k+1));
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
A225419
Triangle read by rows: T(n,k) (0 <= k <= n) = binomial(2*n+2,k).
Original entry on oeis.org
1, 1, 4, 1, 6, 15, 1, 8, 28, 56, 1, 10, 45, 120, 210, 1, 12, 66, 220, 495, 792, 1, 14, 91, 364, 1001, 2002, 3003, 1, 16, 120, 560, 1820, 4368, 8008, 11440, 1, 18, 153, 816, 3060, 8568, 18564, 31824, 43758, 1, 20, 190
Offset: 0
Triangle begins:
1,
1, 4,
1, 6, 15,
1, 8, 28, 56,
1, 10, 45, 120, 210,
1, 12, 66, 220, 495, 792,
1, 14, 91, 364, 1001, 2002, 3003,
...
-
Flatten[Table[Table[DifferenceRoot[Function[{y, n}, {(-(2*m + 1) + n) y[n] + n y[1 + n] == 0, y[1] == 1}]][k], {k, 1, m}], {m, 1, 10}]]
Flatten[Table[Binomial[2n+2,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Apr 13 2014 *)
A142243
Triangle T(n,k) = binomial(2*n,k) *binomial(2*n-2*k,n-k), read by rows; 0<=k<=n.
Original entry on oeis.org
1, 2, 2, 6, 8, 6, 20, 36, 30, 20, 70, 160, 168, 112, 70, 252, 700, 900, 720, 420, 252, 924, 3024, 4620, 4400, 2970, 1584, 924, 3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432, 12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870, 48620
Offset: 0
1;
2, 2;
6, 8, 6;
20, 36, 30, 20;
70, 160, 168, 112, 70;
252, 700, 900, 720, 420, 252;
924, 3024, 4620, 4400, 2970, 1584, 924;
3432, 12936, 22932, 25480, 20020, 12012, 6006, 3432;
12870, 54912, 110880, 141120, 127400, 87360, 48048, 22880, 12870;
48620, 231660, 525096, 753984, 771120, 599760, 371280, 190944, 87516, 48620';
184756, 972400, 2445300, 3912480, 4476780, 3907008, 2713200, 1550400, 755820, 335920, 184756;
-
t[n_, m_] = (Binomial[2*n, m]*Binomial[2*(n - m), (n - m)]); Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Showing 1-6 of 6 results.
Comments