cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062370 a(n) = Sum_{i|n,j|n} sigma(i)*sigma(j)/sigma(gcd(i,j)), where sigma(n) = sum of divisors of n.

Original entry on oeis.org

1, 10, 13, 45, 19, 130, 25, 150, 78, 190, 37, 585, 43, 250, 247, 429, 55, 780, 61, 855, 325, 370, 73, 1950, 174, 430, 358, 1125, 91, 2470, 97, 1122, 481, 550, 475, 3510, 115, 610, 559, 2850, 127, 3250, 133, 1665, 1482, 730, 145, 5577, 310, 1740, 715, 1935
Offset: 1

Views

Author

Vladeta Jovovic, Jul 07 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add(tau(d^2)*sigma(d), d in divisors(n)), n=1..60); # Ridouane Oudra, Aug 25 2019
  • Mathematica
    a[n_] := DivisorSum[n, DivisorSigma[0, #^2] * DivisorSigma[1, #] &]; Array[a, 100] (* Amiram Eldar, Sep 15 2019 *)
  • PARI
    a(n) = my(f=factor(n)); for (j=1, #f~, f[j,1] = 1+ sum(k=1, f[j,2], (2*k+1)*sigma(f[j,1]^k)); f[j,2] = 1); factorback(f); \\ Michel Marcus, Feb 28 2019

Formula

Multiplicative with a(p^e) = 1 + Sum_{k=1..e} (2k+1)sigma(p^k). - Mitch Harris, May 24 2005
a(n) = Sum_{d|n} tau(d^2)*sigma(d), where tau(k) = A000005(k) and sigma(k) = A000203(k). - Ridouane Oudra, Aug 25 2019