cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062436 Nearest integer to log(n!)^log(log(1 + n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 8, 11, 14, 17, 21, 25, 30, 35, 42, 49, 56, 65, 74, 84, 96, 108, 121, 135, 151, 167, 185, 205, 225, 247, 270, 295, 322, 350, 379, 411, 444, 479, 515, 554, 595, 638, 682, 729, 779, 830, 884, 940, 999, 1060, 1124, 1190, 1259, 1331, 1406
Offset: 2

Views

Author

Olivier Gérard, Jun 23 2001

Keywords

Crossrefs

Cf. A062435.

Programs

  • Mathematica
    Round[Log[n! ]^Log[Log[1 + n]]]

A171997 a(n) = a(n-1) + a(n-2) - floor(a(n-2)/2) - floor(a(n-5)/2); initial terms are 1, 1, 2, 3, 4.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 13, 16, 20, 24, 29, 35, 42, 50, 59, 70, 83, 97, 114, 134, 156, 182, 212, 246, 285, 330, 382, 441, 509, 588, 678, 781, 900, 1037, 1193, 1373, 1580, 1817, 2089, 2402, 2761, 3172, 3645, 4187, 4809, 5523, 6342, 7282, 8360
Offset: 1

Views

Author

Roger L. Bagula, Nov 22 2010

Keywords

Comments

lim_{n -> infinity} a(n+1)/a(n) = 1.14710876512065387719410850648860644150605499412513....
a(n) = A062435(n+2) for n < 15.

Crossrefs

Cf. A062435 (integer part of log(n!)^log(log(1 + n))), A023434 (a(n)=a(n-1)+a(n-2)-a(n-4)), A023435 (a(n)=a(n-1)+a(n-2)-a(n-5)), A023436 (a(n)=a(n-1)+a(n-2)-a(n-6)), A023437 (a(n)=a(n-1)+a(n-2)-a(n-7)), A023438 (a(n)=a(n-1)+a(n-2)-a(n-8)), A023439 (a(n)=a(n-1)+a(n-2)-a(n-9)), A023440 (a(n)=a(n-1)+a(n-2)+a(n-10)), A023441 (a(n)=a(n-1)+a(n-2)-a(n-11)), A023442 (a(n)=a(n-1)+a(n-2)-a(n-12)), A000044 (a(n)=a(n-1)+a(n-2)-a(n-13)), A173199 (a(n)=a(n-1)+a(n-2)-floor(a(n-3)/2)-floor(a(n-8)/2)).

Programs

  • Magma
    I:=[1,1,2,3,4]; [n le 5 select I[n] else Self(n-1) + Self(n-2) - Floor(Self(n-2)/2) - Floor(Self(n-5)/2): n in [1..60]]; // Vincenzo Librandi, Jun 24 2015
  • Mathematica
    f[-3] = 0; f[-2] = 0; f[-1] = 0; f[0] = 1; f[1] = 1;
    f[n_] := f[n] = f[n - 1] + f[n - 2] - Floor[f[n - 2]/2] - Floor[f[n - 5]/2]
    Table[f[n], {n, 0, 50}]

Extensions

Offset changed from 0 to 1 by Klaus Brockhaus, Nov 29 2010
Showing 1-2 of 2 results.