cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226025 Odd composite numbers that are not squares of primes.

Original entry on oeis.org

15, 21, 27, 33, 35, 39, 45, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207, 209, 213, 215, 217
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 07 2013

Keywords

Comments

Numbers that are in A071904 (odd composite numbers) but not in A001248 (squares of primes).
First differs from its subsequence A082686 in a(16)=81 which is not in A082686. More precisely, A226025 \ A082686 = A062532 \ {1} = A014076^2 \ {1}. - M. F. Hasler, Oct 20 2013
Odd numbers that are greater than the square of their least prime factor - Odimar Fabeny, Sep 08 2014

Crossrefs

Subsequence of A071904. Cf. A226603.

Programs

  • Haskell
    a226025 n = a226025_list !! (n-1)
    a226025_list = filter ((/= 2) . a100995) a071904_list
    -- Reinhard Zumkeller, Jun 15 2013
    
  • Magma
    [n: n in [3..217 by 2] | not IsPrime(n) and not IsSquare(n) or IsSquare(n) and not IsPrime(Floor(n^(1/2)))];
    
  • Maple
    select(n -> not(isprime(n)) and (not(issqr(n)) or not(isprime(sqrt(n)))), [seq(2*i+1,i=1..1000)]); # Robert Israel, Sep 08 2014
  • Mathematica
    Select[Range[3, 217, 2], ! PrimeQ[#] && ! PrimeQ@Sqrt[#] &]
    r = Prime@Range[2, 6]^2; Complement[Select[Range[3, Last[r] - 2, 2], ! PrimeQ[#] &], Most[r]]
    Select[Range[3,251,2],NoneTrue[{#,Sqrt[#]},PrimeQ]&] (* Harvey P. Dale, Sep 06 2021 *)
  • PARI
    is_A226025(n)={bittest(n,0)&&!isprime(n,0)&&!(issquare(n)&&isprime(sqrtint(n)))&&n>1} \\ - M. F. Hasler, Oct 20 2013

Formula

A226025 = { odd x>1 | A100995(x) = 0 or A100995(x) > 2 }. - M. F. Hasler, Oct 20 2013

A253261 Odd Brazilian squares.

Original entry on oeis.org

81, 121, 225, 441, 625, 729, 1089, 1225, 1521, 2025, 2401, 2601, 3025, 3249, 3969, 4225, 4761, 5625, 5929, 6561, 7225, 7569, 8281, 8649, 9025, 9801, 11025, 12321, 13225, 13689, 14161, 14641, 15129, 15625, 16641, 17689, 18225, 19881, 20449, 21025, 21609, 23409, 24025, 25281, 25921, 27225, 28561
Offset: 1

Views

Author

Derek Orr, Apr 30 2015

Keywords

Comments

121 is believed to be the only number of the form p^2 for prime p.
The previous comment conjectures the 1 and the 121 are the only difference with respect to A062532. - R. J. Mathar, Jul 25 2015

Crossrefs

Programs

  • PARI
    for(n=4, 10^5, for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d)&&(n+1)%2==0&&issquare(n), print1(n, ", "); break)))
Showing 1-2 of 2 results.