A062544 a(n) = n plus sum of previous three terms.
0, 1, 3, 7, 15, 30, 58, 110, 206, 383, 709, 1309, 2413, 4444, 8180, 15052, 27692, 50941, 93703, 172355, 317019, 583098, 1072494, 1972634, 3628250, 6673403, 12274313, 22575993, 41523737, 76374072, 140473832, 258371672, 475219608, 874065145, 1607656459, 2956941247
Offset: 0
Examples
a(5) = 5 + 15 + 7 + 3 = 30. x + 3*x^2 + 7*x^3 + 15*x^4 + 30*x^5 + 58*x^6 + 110*x^7 + 206*x^8 + 383*x^9 + ...
Links
- Harry J. Smith, Table of n, a(n) for n = 0..300
- Zuwen Luo and Kexiang Xu, The number of connected sets in Apollonian networks, Applied Mathematics and Computation, Volume 479, 2024. On ResearchGate. See p. 12.
- L. Moser and E. L. Whitney, Weighted compositions, Canad. Math. Bull. 4 (1961), 39-43.
- Index entries for linear recurrences with constant coefficients, signature (3,-2,0,-1,1).
Crossrefs
Programs
-
Mathematica
Join[{c=0},a=b=0;Table[z=b+a+c+n;a=b;b=c;c=z,{n,1,40}]] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
-
PARI
{ a=a1=a2=a3=0; for (n=0, 300, write("b062544.txt", n, " ", a+=n + a2 + a3); a3=a2; a2=a1; a1=a ) } \\ Harry J. Smith, Aug 08 2009
-
PARI
{a(n) = if( n<0, n = -n; polcoeff( x^4 / ((1 - x) * (1 - 2*x^3 + x^4)) + x * O(x^n), n), polcoeff( x / ((1 - x) * (1 - 2*x + x^4)) + x * O(x^n), n))} /* Michael Somos, Dec 28 2012 */
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - 1*a(n-4) + 1*a(n-5). - Joerg Arndt, Apr 02 2011
a(n) = n + a(n-1) + a(n-2) + a(n-3) =(A001590(n+4) - n - 3)/2.
G.f.: x / ((1 - x) * (1 - 2*x + x^4)). a(n) = 2*a(n-1) - a(n-4) + 1. - Michael Somos, Dec 28 2012
a(n) = A325473(n+3) - (n+3). - Brian Hopkins, Sep 06 2019
Comments