A062584 a(n) is the smallest prime whose digits include the digits of n as a substring.
101, 11, 2, 3, 41, 5, 61, 7, 83, 19, 101, 11, 127, 13, 149, 151, 163, 17, 181, 19, 1201, 211, 223, 23, 241, 251, 263, 127, 281, 29, 307, 31, 1321, 233, 347, 353, 367, 37, 383, 139, 401, 41, 421, 43, 443, 457, 461, 47, 487, 149, 503, 151, 521, 53, 541, 557, 563
Offset: 0
Examples
0 first occurs in 101. 14 first occurs as a substring in 149.
Links
Crossrefs
Programs
-
Haskell
import Data.List (isInfixOf) a062584 n = head [p | p <- a000040_list, show n `isInfixOf` show p] -- Reinhard Zumkeller, Dec 29 2011
-
Mathematica
Do[k = 1; While[ StringPosition[ ToString[Prime[k]], ToString[n]] == {}, k++ ]; Print[ Prime[k]], {n, 0, 62} ] (* Second program *) Function[s, Table[FromDigits@ FirstCase[s, w_ /; SequenceCount[w, IntegerDigits@ n] > 0], {n, 0, 56}]]@ IntegerDigits@ Prime@ Range[10^4] (* Michael De Vlieger, Jun 24 2017 *) With[{prs=Prime[Range[300]]},Table[SelectFirst[prs,SequenceCount[ IntegerDigits[#], IntegerDigits[ n]]>0&],{n,0,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 06 2018 *)
-
PARI
build(root, prefixLen, suffixLen)=my(v=List(),t); for(i=10^(prefixLen-1)\1,10^prefixLen-1, t=eval(Str(i,root))*10^suffixLen; for(n=t,t+10^suffixLen-1, listput(v,n))); Vec(v) buildLen(n,d)=my(v=[]); for(i=0,d, v=concat(v,build(n,i,d-i))); Set(v) a(n)=if(n==0, return(101)); my(d,v); while(1, v=buildLen(n,d); for(i=1,#v, if(isprime(v[i]), return(v[i]))); d++) \\ Charles R Greathouse IV, Jun 23 2017
-
PARI
first(n) = my(res = vector(n), todo = n, g); forprime(p = 2, , d = digits(p); for(i=1,#d, if(d[i]!=0, g = d[i]; if(res[g]==0, res[g]=p; todo--); for(j=1,#d-i, g=10*g+d[i+j]; if(g>n,next(2)); if(res[g]==0, res[g]=p; todo--)))); if(todo==0,return(concat([101],res)))) \\ David A. Corneth, Jun 23 2017
-
Python
from sympy import nextprime def a(n): p, s = 2, str(n) while s not in str(p): p = nextprime(p) return p print([a(n) for n in range(57)]) # Michael S. Branicky, Dec 02 2021
Formula
a(n) = prime(A082058(n)). - Giovanni Resta, Apr 29 2017
Extensions
More terms from Lior Manor, Jul 08 2001
Corrected by Larry Reeves (larryr(AT)acm.org), Jul 10 2001
Further correction from Reinhard Zumkeller, Oct 14 2001
Name clarified by Jon E. Schoenfield, Dec 04 2021
Comments