A062695 Squarefree n such that the elliptic curve n*y^2 = x^3 - x arising in the "congruent number" problem has rank 2.
34, 41, 65, 137, 138, 145, 154, 161, 194, 210, 219, 226, 257, 265, 291, 299, 313, 323, 330, 353, 371, 386, 395, 410, 426, 434, 442, 457, 465, 505, 514, 546, 561, 602, 609, 651, 658, 674, 689, 721, 723, 731, 761, 777, 793, 866, 889, 890, 905, 915, 985, 987, 995
Offset: 1
Keywords
Links
- Jinyuan Wang, Table of n, a(n) for n = 1..453
- A. Dujella, A. S. Janfeda, S. Salami, A Search for High Rank Congruent Number Elliptic Curves, JIS 12 (2009) 09.5.8
- N. D. Elkies, Algorithmic (a.k.a. Computational) Number Theory: Tables, Links, etc.
- G. Kramarz, All congruent numbers less than 2000, Math. Annalen, 273 (1986), 337-340.
- G. Kramarz, All congruent numbers less than 2000, Math. Annalen, 273 (1986), 337-340. [Annotated, corrected, scanned copy]
- Kazunari Noda and Hideo Wada, All congruent numbers less than 10000, Proc. Japan Acad. Ser. A Math. Sci., Volume 69, Number 6 (1993), 175-178.
Programs
-
PARI
r(n)=ellanalyticrank(ellinit([0,0,0,-n^2,0]))[1] for(n=1,1e3,if(issquarefree(n)&&r(n)==2,print1(n", "))) \\ Charles R Greathouse IV, Sep 01 2011; corrected by Frank M Jackson, Aug 04 2016
Extensions
More terms from Jinyuan Wang, Dec 12 2020
Comments