cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062734 Triangular array T(n,k) giving number of connected graphs with n labeled nodes and k edges (n >= 1, 0 <= k <= n(n-1)/2).

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 1, 0, 0, 0, 16, 15, 6, 1, 0, 0, 0, 0, 125, 222, 205, 120, 45, 10, 1, 0, 0, 0, 0, 0, 1296, 3660, 5700, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 0, 0, 16807, 68295, 156555, 258125, 331506, 343140, 290745, 202755, 116175, 54257, 20349
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Comments

T(n,n-1) = n^(n-2) counts free labeled trees A000272.
T(n,n) counts labeled connected unicyclic graphs A057500. - Geoffrey Critzer, Oct 07 2012

Examples

			Triangle starts:
[1],
[0, 1],
[0, 0, 3,  1],
[0, 0, 0, 16,  15,   6,   1],
[0, 0, 0,  0, 125, 222, 205, 120, 45, 10, 1],
...
		

References

  • Cowan, D. D.; Mullin, R. C.; Stanton, R. G. Counting algorithms for connected labelled graphs. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 225-236. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0414417 (54 #2519). - N. J. A. Sloane, Apr 06 2012
  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.5.

Crossrefs

Cf. A001187 (row sums), A054924 (unlabeled case), A061540 (a subdiagonal).
See A123527 for another version (without leading zeros in each row).

Programs

  • Mathematica
    nn=6;s=Sum[(1+y)^Binomial[n,2] x^n/n!,{n,0,nn}]; Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *)
    T[ n_, k_] := If[ n < 0, 0, Coefficient[ n! SeriesCoefficient[ Log[ Sum[ (1 + y)^Binomial[m, 2] x^m/m!, {m, 0, n}]], {x, 0, n}], y, k]]; (* Michael Somos, Aug 12 2017 *)
  • PARI
    {T(n, k) = if( n<0, 0, n! * polcoeff( polcoeff( log( sum(m=0, n, (1 + y)^(m * (m-1)/2) * x^m/m!)), n), k))}; /* Michael Somos, Aug 12 2017 */

Formula

G.f.: Sum_{n>=1, k>=0} T(n, k) * x^n/n! * y^k = log(Sum_{n>=0} (1 + y)^binomial(n, 2) * x^n/n!). - Ralf Stephan, Jan 18 2005