cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062735 Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).

Original entry on oeis.org

1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1

Views

Author

Vladeta Jovovic, Jul 12 2001

Keywords

Examples

			1;
0, 2, 1;
0, 0, 12, 20,   15,    6,      1;
0, 0, 0, 128,  432,  768,    920,    792,    495,    220,     66,    12, 1;
0, 0, 0,   0, 2000, 11104, 33880,  73480, 123485, 166860, 184426, 167900, ...;
0, 0, 0,   0,    0, 41472, 337920,1536000,5062080,.. ;
0, 0, 0,   0,    0,     0, 1075648,...
		

Crossrefs

Cf. A003027 (row sums), A054733 (unlabeled case), A057273 (strongly connected), A097629 (diagonal), A123554 (not necessarily connected).

Programs

  • Mathematica
    nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid  (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
  • PARI
    row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))}
    { for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022

Formula

E.g.f.: 1+log( Sum_{n >= 0, k >= 0} binomial(n*(n-1), k)*x^n/n!*y^k ).