A062735 Triangular array T(n,k) giving number of weakly connected digraphs with n labeled nodes and k arcs (n >= 1, 0 <= k <= n(n-1)).
1, 0, 2, 1, 0, 0, 12, 20, 15, 6, 1, 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, 125965, 77520, 38760, 15504, 4845, 1140, 190, 20, 1, 0, 0, 0, 0, 0, 41472, 337920, 1536000, 5062080
Offset: 1
Examples
1; 0, 2, 1; 0, 0, 12, 20, 15, 6, 1; 0, 0, 0, 128, 432, 768, 920, 792, 495, 220, 66, 12, 1; 0, 0, 0, 0, 2000, 11104, 33880, 73480, 123485, 166860, 184426, 167900, ...; 0, 0, 0, 0, 0, 41472, 337920,1536000,5062080,.. ; 0, 0, 0, 0, 0, 0, 1075648,...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..2680 (rows 1..20)
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO], 2017; Table 76.
Crossrefs
Programs
-
Mathematica
nn=7;s=Sum[(1+y)^(n^2-n) x^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[Log[ s]+1,{x,0,nn}],{x,y}]//Grid (* returns triangle indexed from n = 0, Geoffrey Critzer, Oct 07 2012 *)
-
PARI
row(n)={Vecrev(n!*polcoef(1 + log(sum(k=0, n, (1+y)^(k*(k-1))*x^k/k!, O(x*x^n))), n))} { for(n=0, 5, print(row(n))) } \\ Andrew Howroyd, Jan 11 2022
Formula
E.g.f.: 1+log( Sum_{n >= 0, k >= 0} binomial(n*(n-1), k)*x^n/n!*y^k ).