A062790 Moebius transform of the cototient function A051953.
0, 1, 1, 1, 1, 2, 1, 2, 2, 4, 1, 3, 1, 6, 5, 4, 1, 6, 1, 5, 7, 10, 1, 6, 4, 12, 6, 7, 1, 8, 1, 8, 11, 16, 9, 8, 1, 18, 13, 10, 1, 12, 1, 11, 12, 22, 1, 12, 6, 20, 17, 13, 1, 18, 13, 14, 19, 28, 1, 13, 1, 30, 16, 16, 15, 20, 1, 17, 23, 24, 1, 16, 1, 36, 24, 19, 15, 24, 1, 20, 18, 40, 1, 19
Offset: 1
Keywords
Examples
n = 255, its divisors are {1,3,5,25,17,51,85,255}, A051953(255/d) = {127,21,19,1,7,1,1,0}, mu(d) = {1,-1,-1,1,-1,1,1,-1}, the sum is a(255) = 127-21-19+1-7+1+1+0 = 130-47 = 83.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384 (terms 1 .. 2000 from Harry J. Smith)
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Programs
-
Mathematica
Table[DirichletConvolve[MoebiusMu[n], n-EulerPhi[n], n, k], {k, 100}] (* Amiram Eldar, Nov 24 2018 *)
-
PARI
A062790(n)={ local(a=0) ; fordiv(n,d, a += moebius(d)*(n/d-eulerphi(n/d)) ; ) ; return(a) ; } \\ R. J. Mathar, Mar 24 2012
-
PARI
A062790(n) = sumdiv(n,d,moebius(n/d)*(d-eulerphi(d))); \\ Antti Karttunen, Nov 24 2018
Formula
a(n) = Sum f(n/d)*mu(d), where d divides n and f(x) = x-phi(x) = A051953(x).
From Amiram Eldar, Dec 15 2023: (Start)
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 6/Pi^2 - 36/Pi^4. (End)
Extensions
OFFSET changed from 0 to 1 by Harry J. Smith, Aug 11 2009