Original entry on oeis.org
1, 4, 24, 336, 5520, 203040, 7025760, 510370560, 30163311360, 3577017024000, 319851801561600, 55850407258060800, 7021439018770176000, 1692163531361176473600, 284409062346887622144000, 90395009213694143422464000, 19571060809440210728706048000, 7929132907666579072319471616000
Offset: 1
A062866
Triangle of number of permutations by barycenter.
Original entry on oeis.org
1, 1, 2, 1, 4, 1, 1, 4, 14, 4, 1, 1, 5, 31, 46, 31, 5, 1, 1, 6, 66, 146, 282, 146, 66, 6, 1, 1, 7, 134, 392, 1289, 1394, 1289, 392, 134, 7, 1, 1, 8, 267, 960, 4859, 7736, 12658, 7736, 4859, 960, 267, 8, 1, 1, 9, 529, 2235, 16615, 34659, 85831, 83122, 85831, 34659, 16615, 2235, 529, 9, 1
Offset: 0
(1,3,2,5,7,6,4) has difference (0,1,-1,1,2,0,-3) and signs (0,1,-1,1,1,0,-1) with total 1. This is one of 1289 such permutations of degree 7.
Triangle begins:
: 1 ;
: 1 ;
: 2 ;
: 1, 4, 1 ;
: 1, 4, 14, 4, 1 ;
: 1, 5, 31, 46, 31, 5, 1 ;
: 1, 6, 66, 146, 282, 146, 66, 6, 1 ;
: 1, 7, 134, 392, 1289, 1394, 1289, 392, 134, 7, 1 ;
: 1, 8, 267, 960, 4859, 7736, 12658, 7736, 4859, 960, 267, 8, 1 ;
-
b:= proc(s, t) option remember; (n-> `if`(n=0, x^t,
add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b({$1..n}, 0)):
seq(T(n), n=0..11); # Alois P. Heinz, Jul 31 2018
-
row[n_] := Sort[Tally[Total[Sign[# - Range[n]]]& /@ Permutations[Range[n]] ]][[All, 2]]; Array[row, 9] // Flatten (* Jean-François Alcover, Oct 07 2016 *)
A263744
T(n,k)=Number of length n arrays of permutations of 0..n-1 with each element moved by -k to k places and equal numbers of elements moved upwards and downwards.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 2, 4, 5, 1, 2, 4, 10, 8, 1, 2, 4, 14, 19, 13, 1, 2, 4, 14, 36, 43, 21, 1, 2, 4, 14, 46, 110, 90, 34, 1, 2, 4, 14, 46, 214, 277, 202, 55, 1, 2, 4, 14, 46, 282, 664, 823, 434, 89, 1, 2, 4, 14, 46, 282, 1118, 2516, 2292, 971, 144, 1, 2, 4, 14, 46, 282, 1394, 5962
Offset: 1
Some solutions for n=7 k=4
..3....3....0....2....3....4....2....0....3....4....2....3....3....3....1....1
..1....0....4....1....1....5....1....2....0....0....3....2....4....2....2....5
..0....4....5....0....2....3....6....4....2....3....6....0....6....1....0....2
..4....1....1....3....0....0....5....1....4....1....1....1....1....0....5....0
..2....5....3....5....4....2....0....3....6....5....0....4....0....4....3....6
..5....2....6....4....6....1....4....5....1....2....5....5....5....5....4....3
..6....6....2....6....5....6....3....6....5....6....4....6....2....6....6....4
A062867
Triangle read by rows: entries give numbers of permutations of [1..n] by absolute barycenter.
Original entry on oeis.org
1, 1, 2, 4, 2, 14, 8, 2, 46, 62, 10, 2, 282, 292, 132, 12, 2, 1394, 2578, 784, 268, 14, 2, 12658, 15472, 9718, 1920, 534, 16, 2, 83122, 171662, 69318, 33230, 4470, 1058, 18, 2, 985730, 1282604, 964544, 276044, 107660, 10100, 2096, 20, 2, 8012962, 17465978, 8199268, 4851200, 1022824, 337988, 22396, 4160, 22, 2
Offset: 0
[1], [2], [4, 2], [14, 8, 2], [46, 62, 10, 2], [282, 292, 132, 12, 2], ...
(1,6,2,3,4,5,7) has difference (0,5,-1,-1,-1,-1,0) and signs (0,1,-1,-1,-1,-1,0) with total -3, absolute value is 3. This is one of 268 such permutations of degree 7.
Triangle T(n,k) begins:
1;
1;
2;
4, 2;
14, 8, 2;
46, 62, 10, 2;
282, 292, 132, 12, 2;
1394, 2578, 784, 268, 14, 2;
12658, 15472, 9718, 1920, 534, 16, 2;
83122, 171662, 69318, 33230, 4470, 1058, 18, 2;
985730, 1282604, 964544, 276044, 107660, 10100, 2096, 20, 2;
-
b:= proc(s, t) option remember; (n-> `if`(n=0, x^t,
add(b(s minus {j}, t+signum(n-j)), j=s)))(nops(s))
end:
T:= n-> (p-> seq(coeff(p, x, i)*`if`(i=0, 1, 2), i=0..degree(p)))(b({$1..n}, 0)):
seq(T(n), n=0..12); # Alois P. Heinz, Jul 31 2018
-
b[s_, t_] := b[s, t] = With[{n = Length[s]}, If[n == 0, x^t, Sum[b[s ~Complement~ {j}, t + Sign[n - j]], {j, s}]]];
T[n_] := With[{p = b[Range[n], 0]}, Table[Coefficient[p, x, i]*If[i == 0, 1, 2], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 25 2021, after Alois P. Heinz *)
Original entry on oeis.org
1, 1, 7, 161, 7631, 607009, 72605303, 12172272321, 2722634203807, 783282749905601, 281751782666559239, 123890976070562785633, 65380371270827869603439, 40779819387085820255904481, 29677003954344675666092048791, 24921035407468294238607282809729
Offset: 0
-
a := n -> add((-1)^(n-k)*combinat:-eulerian1(n+k,n)*binomial(2*n,n-k), k=0..n): seq(a(n), n=0..15); # Peter Luschny, Dec 19 2018
-
E1[n_ /; n >= 0, 0] = 1; E1[n_, k_] /; k < 0 || k > n = 0; E1[n_, k_] := E1[n, k] = (n - k) E1[n - 1, k - 1] + (k + 1) E1[n - 1, k];
a[n_] := Sum[(-1)^(n - k) E1[n + k, n] Binomial[2 n, n - k], {k, 0, n}];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Dec 30 2018, after Peter Luschny *)
A169934
Number of permutations of 1..n with the number moved left exceeding the number moved right by 2.
Original entry on oeis.org
0, 0, 0, 1, 5, 66, 392, 4859, 34659, 482272, 4099634, 65762489, 653977909, 12026621478, 137361430156, 2862534403223, 36968414699239, 862935261673212, 12440701298168534, 321935664074780549, 5126628962937663529, 145768013651370381026, 2541561479354892816304
Offset: 1
Equal number moved left and right, see
A062868.
A179562
Number of permutations of 1..n with the number moved left exceeding the number moved right by 1.
Original entry on oeis.org
0, 0, 1, 4, 31, 146, 1289, 7736, 85831, 641302, 8732989, 78432212, 1270475155, 13338831858, 250740220345, 3013809363056, 64512904742895, 873589792390382, 20982459271174517, 316070362138732172, 8418423492219771211, 139628838506569935338, 4084524856346911809777
Offset: 1
Equal number moved left and right, see
A062868.
A179567
Number of permutations of 1..n with the number moved left exceeding the number moved right by 1 or more.
Original entry on oeis.org
0, 0, 1, 5, 37, 219, 1823, 13831, 139879, 1321535, 15951919, 181202031, 2549722415, 33883956911, 545091050671, 8301190456511, 150332113604031, 2581953013032639
Offset: 1
Equal number moved left and right, see
A062868.
Original entry on oeis.org
0, 0, 6, 120, 4440, 157680, 9187920, 557665920, 50759291520, 4795586208000, 636749560339200, 86796062772249600, 15877174512431232000, 2953945462595410483200, 712801595188655900928000, 173684063741850454560768000, 53471242848053479728254976000, 16530628080065352033845256192000
Offset: 1
A179564
Number of permutations of 1..n with the number moved left exceeding the number moved right by 3.
Original entry on oeis.org
0, 0, 0, 0, 1, 6, 134, 960, 16615, 138022, 2425600, 23279224, 444500577, 4880181294, 102914967458, 1277238809792, 29767443364523, 412889949481670, 10588965173821348, 162515224089696984, 4560137456338593333, 76773519570724122126, 2343258977445039475014
Offset: 1
Equal number moved left and right, see
A062868.
Showing 1-10 of 15 results.
Comments