Original entry on oeis.org
0, 0, 6, 120, 4440, 157680, 9187920, 557665920, 50759291520, 4795586208000, 636749560339200, 86796062772249600, 15877174512431232000, 2953945462595410483200, 712801595188655900928000, 173684063741850454560768000, 53471242848053479728254976000, 16530628080065352033845256192000
Offset: 1
A062868
Number of permutations of degree n with barycenter 0.
Original entry on oeis.org
1, 1, 2, 4, 14, 46, 282, 1394, 12658, 83122, 985730, 8012962, 116597538, 1127575970, 19410377378, 217492266658, 4320408974978, 55023200887938, 1238467679662722, 17665859065690754, 444247724347355554, 7015393325151055906, 194912434760367113570, 3375509056735963889634
Offset: 0
(4,1,3,5,2) has difference (3,-1,0,1,-3) and signs (1,-1,0,1,-1) with total 0.
-
b:= proc(s, t) option remember; (n-> `if`(abs(t)>n, 0, `if`(n=0, 1,
add(b(s minus {j}, t+signum(n-j)), j=s))))(nops(s))
end:
a:= n-> b({$1..n}, 0):
seq(a(n), n=0..14); # Alois P. Heinz, Jul 31 2018
-
E1[n_ /; n >= 0, 0] = 1;
E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
b[n_] := Sum[(-1)^(n-k) E1[n+k, n] Binomial[2n, n-k], {k, 0, n}];
a[n_] := Sum[Binomial[n, n-2k] b[k], {k, 0, n/2}];
a /@ Range[0, 150] (* Jean-François Alcover, Oct 29 2020, after Peter Luschny in A320337 *)
Showing 1-2 of 2 results.
Comments