cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062878 a(n) is the position of A050614(n) in A062877.

Original entry on oeis.org

1, 3, 6, 15, 24, 60, 102, 255, 384, 960, 1632, 4080, 6168, 15420, 26214, 65535, 98304, 245760, 417792, 1044480, 1579008, 3947520, 6710784, 16776960, 25166208, 62915520, 106956384, 267390960, 404232216, 1010580540, 1717986918, 4294967295, 6442450944
Offset: 0

Views

Author

Antti Karttunen, Jun 26 2001

Keywords

Comments

In binary this sequence looks like 1, 11, 110, 1111, 11000, 111100, 1100110, 11111111, 110000000, 1111000000, 11001100000, 111111110000, 1100000011000, 11110000111100, 110011001100110, ...
Sequence A282387 may be the same, but I cannot prove nor disprove this beyond a(22). - Robert Price, Feb 13 2017
Agrees with A282387 for at least 1000 terms. - Sean A. Irvine, Apr 14 2023

Programs

  • Mathematica
    A050614 = Table[k = Floor[Log[2, n + 1]]; Product[j = 2^(i + 1); l = Fibonacci[j + 1] + Fibonacci[j - 1]; If[BitAnd[2^i, n] == 0, b = 0, b = 1]; l^b, {i, 0, k}], {n, 0, 200}]; A062877 = Union[Total /@ Subsets[Fibonacci[Range[1, 46, 2]]]]; Flatten[Table[Position[ A062877, A050614[[i]] ] - 1, {i, 1, 25}]] (* Robert Price, Feb 13 2017 *)

Formula

a(2^n-1) = 2^(2^n) - 1. - Philippe Deléham, Apr 05 2007
a(n) = Sum_{k=0..n} A127872(n,k)*2^k. - Philippe Deléham, Oct 09 2007

Extensions

a(15)-a(22) from Robert Price, Feb 13 2017
More terms from Sean A. Irvine, Apr 14 2023