cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A062904 Numbers n such that n and its reversal are both multiples of 14.

Original entry on oeis.org

252, 434, 616, 686, 868, 2002, 2072, 2254, 2436, 2520, 2590, 2618, 2688, 2702, 2772, 2954, 4004, 4074, 4256, 4340, 4438, 4522, 4592, 4704, 4774, 4956, 6006, 6076, 6160, 6258, 6342, 6524, 6594, 6706, 6776, 6860, 6958, 8008, 8078, 8162, 8344, 8526, 8596
Offset: 1

Views

Author

Amarnath Murthy, Jul 01 2001

Keywords

Examples

			2254 and 4522 are both multiples of 14.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,j;
      L:= convert(n,base,10);
      add(10^(j-1)*L[-j],j=1..nops(L)) mod 14 = 0
    end proc:
    select(filter, [seq(seq(seq(a*10^d+x,x=((-a*10^d) mod 14)..10^d-2,14),a=2..8,2),d=1..4)]); # Robert Israel, May 11 2018
  • Mathematica
    Select[14*Range[700],Divisible[FromDigits[Reverse[IntegerDigits[ #]]],14]&] (* Harvey P. Dale, Jul 25 2012 *)
  • PARI
    isok(n) = !(n % 14) && !(fromdigits(Vecrev(digits(n))) % 14); \\ Michel Marcus, May 12 2018

Extensions

More terms from Erich Friedman, Jul 02 2001

A062902 Number and its reversal are both multiples of 12.

Original entry on oeis.org

0, 48, 84, 216, 252, 276, 408, 420, 444, 468, 480, 612, 636, 672, 696, 804, 828, 840, 864, 888, 2100, 2112, 2124, 2136, 2148, 2160, 2172, 2184, 2196, 2304, 2316, 2328, 2340, 2352, 2364, 2376, 2388, 2508, 2520, 2532, 2544, 2556, 2568, 2580, 2592, 2700, 2712
Offset: 1

Views

Author

Amarnath Murthy, Jul 01 2001

Keywords

Comments

Numbers divisible by 12 with reversal divisible by 4. - Robert Israel, May 04 2025

Examples

			216 and 612 are both multiples of 12.
		

Crossrefs

Cf. A062897 (2), A062898 (4), A062899 (6), A062900 (8), A062901 (7), A062903 (13), A062904 (14), A062905 (15), A062906 (17), A062907 (19).

Programs

  • ARIBAS
    n := 12; stop := 2800; m := 0; while m < stop do rev := int_reverse(m); if rev mod n = 0 then write(m," "); end; inc(m,n); end;
  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    select(t -> rev(t) mod 12 = 0, [seq(i,i=0..3000,12)]); # Robert Israel, May 04 2025

Extensions

Corrected and extended by Dean Hickerson, Jul 06 2001
Offset changed by Georg Fischer, Sep 08 2022
Showing 1-2 of 2 results.