A067863
Numbers k such that k divides the sum of digits of 7^k.
Original entry on oeis.org
1, 13, 67, 94, 139, 220, 805
Offset: 1
13 divides the sum of digits of 7^13 (i.e., 9 + 6 + 8 + 8 + 9 + 0 + 1 + 0 + 4 + 0 + 7 = 52), so 13 is in the sequence.
-
For[n = 1, n < 2000, n++, a := DigitCount[7^n]; If[IntegerQ[Sum[a[[i]]*i, {i, 1, 9}]/n], Print[n]]] (* Stefan Steinerberger, Mar 14 2006 *)
Select[Range[1000],Mod[Total[IntegerDigits[7^#]],#]==0&] (* Harvey P. Dale, Sep 22 2024 *)
A220365
a(n) is conjectured to be the largest power k for which k divides the sum of digits of n^k.
Original entry on oeis.org
1, 70, 486, 35, 10, 90, 805, 5218, 243, 1, 35, 1494, 469004, 1045, 288, 116, 7, 195, 29, 70, 16710, 23, 2, 1017, 28, 58, 162, 166, 209, 486, 205, 106, 1206, 2053, 37120
Offset: 1
a(2) = 70 since the sum of digits of 2^70 is divisible by 70 and it is believed that there does not exist any larger exponent which satisfies this criterion.
-
For any individual base, b, fQ[n_] := Mod[Plus @@ IntegerDigits[b^n], n] == 0; k = 1; lst = {}; While[k < 100001, If[ fQ@ k, AppendTo[lst, k]; Print[k]]; k++]; lst
Showing 1-2 of 2 results.
Comments