cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062964 Pi in hexadecimal.

Original entry on oeis.org

3, 2, 4, 3, 15, 6, 10, 8, 8, 8, 5, 10, 3, 0, 8, 13, 3, 1, 3, 1, 9, 8, 10, 2, 14, 0, 3, 7, 0, 7, 3, 4, 4, 10, 4, 0, 9, 3, 8, 2, 2, 2, 9, 9, 15, 3, 1, 13, 0, 0, 8, 2, 14, 15, 10, 9, 8, 14, 12, 4, 14, 6, 12, 8, 9, 4, 5, 2, 8, 2, 1, 14, 6, 3, 8, 13, 0, 1, 3, 7, 7, 11, 14, 5, 4, 6, 6, 12, 15, 3, 4, 14, 9
Offset: 1

Views

Author

Robert Lozyniak (11(AT)onna.com), Jul 22 2001

Keywords

Comments

Bailey and Crandall conjecture that the terms of this sequence, apart from the first, are given by the formula floor(16*(x(n) - floor(x(n)))), where x(n) is determined by the recurrence equation x(n) = 16*x(n-1) + (120*n^2 - 89*n + 16)/(512*n^4 - 1024*n^3 + 712*n^2 - 206*n + 21) with the initial condition x(0) = 0 (see A374334). They have numerically verified the conjecture for the first 100000 terms of the sequence. - Peter Bala, Oct 31 2013
Bailey, Borwein & Plouffe's ("BBP") formula allows one to compute the n-th hexadecimal digit of Pi without calculating the preceding digits (see Wikipedia link). - M. F. Hasler, Mar 14 2015

Examples

			3.243f6a8885a308d3...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 17-28.

Crossrefs

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), this sequence (b=16), A060707 (b=60).

Programs

  • Mathematica
    RealDigits[ N[ Pi, 115], 16] [[1]]
  • PARI
    { default(realprecision, 24300); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*16; write("b062964.txt", n, " ", d)); } \\ Harry J. Smith, Apr 27 2009
    
  • PARI
    N=50; default(realprecision,.75*N); A062964=digits(Pi*16^N\1,16) \\ M. F. Hasler, Mar 14 2015

Formula

a(n) = 8*A004601(4n) + 4*A004601(4n+1) + 2*A004601(4n+2) + 1*A004601(4n+3).
If Pi is the expansion of Pi in base 10, Pi=3.1415926...: a(n) = floor(16^n*Pi) - 16*floor(16^(n-1)*Pi). - Benoit Cloitre, Mar 09 2002

Extensions

More terms from Henry Bottomley, Jul 24 2001