A062964 Pi in hexadecimal.
3, 2, 4, 3, 15, 6, 10, 8, 8, 8, 5, 10, 3, 0, 8, 13, 3, 1, 3, 1, 9, 8, 10, 2, 14, 0, 3, 7, 0, 7, 3, 4, 4, 10, 4, 0, 9, 3, 8, 2, 2, 2, 9, 9, 15, 3, 1, 13, 0, 0, 8, 2, 14, 15, 10, 9, 8, 14, 12, 4, 14, 6, 12, 8, 9, 4, 5, 2, 8, 2, 1, 14, 6, 3, 8, 13, 0, 1, 3, 7, 7, 11, 14, 5, 4, 6, 6, 12, 15, 3, 4, 14, 9
Offset: 1
Examples
3.243f6a8885a308d3...
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 17-28.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..20000
- D. H. Bailey, Compendium of BBP-Type Formulas for Mathematical Constants.
- D. H. Bailey and R. E. Crandall, On the Random Character of Fundamental Constant Expansions, Experiment. Math. Volume 10, Issue 2 (2001), 175-190.
- CalcCrypto, Pi in Hexadecimal. [Broken link]
- Steven R. Finch, The Miraculous Bailey-Borwein-Plouffe Pi Algorithm.
- Steve Pagliarulo, Stu's pi page: base 16 (31 pages of numbers). [Dead link]
- Johnny Vogler, More digits.
- Wikipedia, Bailey-Borwein-Plouffe formula.
Crossrefs
Programs
-
Mathematica
RealDigits[ N[ Pi, 115], 16] [[1]]
-
PARI
{ default(realprecision, 24300); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*16; write("b062964.txt", n, " ", d)); } \\ Harry J. Smith, Apr 27 2009
-
PARI
N=50; default(realprecision,.75*N); A062964=digits(Pi*16^N\1,16) \\ M. F. Hasler, Mar 14 2015
Formula
If Pi is the expansion of Pi in base 10, Pi=3.1415926...: a(n) = floor(16^n*Pi) - 16*floor(16^(n-1)*Pi). - Benoit Cloitre, Mar 09 2002
Extensions
More terms from Henry Bottomley, Jul 24 2001
Comments