cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062966 a(n) = C(3+n, n) + C(4+n, n) + C(5+n, n) + C(6+n, n).

Original entry on oeis.org

4, 22, 74, 195, 441, 896, 1680, 2958, 4950, 7942, 12298, 18473, 27027, 38640, 54128, 74460, 100776, 134406, 176890, 229999, 295757, 376464, 474720, 593450, 735930, 905814, 1107162, 1344469, 1622695, 1947296
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 6}_{3}, n >= 0.

Crossrefs

Seventh column (r=6) of FS(4) staircase array A062750.
Partial sums of A027659.

Programs

  • Mathematica
    Table[Sum[Binomial[i+n,n],{i,3,6}],{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{4,22,74,195,441,896,1680},30] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    { for (n=0, 1000, a=binomial(3 + n, n) + binomial(4 + n, n) + binomial(5 + n, n) + binomial(6 + n, n); write("b062966.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 14 2009

Formula

a(n) = A062750(n+2, 6) = (n+10)*(n+3)*(n+2)*(n+1)*(n^2+11*n+48)/6!.
G.f.: = (x-2)*(x^2-2*x+2)/(x-1)^7 = N(4;1, x)/(1-x)^7 with N(4;1, x) = 4-6*x+4*x^2-x^3, polynomial of second row of A062751.
a(0)=4, a(1)=22, a(2)=74, a(3)=195, a(4)=441, a(5)=896, a(6)=1680, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, May 02 2012

Extensions

Better description from Zerinvary Lajos, Dec 02 2005