A062977 Difference between largest and smallest positive exponent in prime factorization of n; a(1) = 0 by convention.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 0, 0, 0, 0, 2, 0
Offset: 1
Examples
a(24) = 2 since 24 = 2^3*3^1 and max(3,1) - min(3,1) = 3 - 1 = 2; a(25) = 0 since 25 = 5^2 and max(2) - min(2) = 2 - 2 = 0.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000 (first 4000 terms from Harry J. Smith)
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Mathematica
dlsp[n_]:=Module[{xp=FactorInteger[n][[All,2]]},Max[xp]-Min[xp]]; Join[ {0},Array[ dlsp,120]] (* Harvey P. Dale, Jan 28 2021 *)
-
PARI
{ for (n=1, 4000, if (n<2, M=m=0, f=factor(n)~; M=m=f[2, 1]; for (i=2, length(f), M=max(M, f[2, i]); m=min(m, f[2, i]))); write("b062977.txt", n, " ", M - m) ) } \\ Harry J. Smith, Aug 14 2009
-
PARI
A062977(n) = if((1==n),0,n=(factor(n)[, 2]); vecmax(n)-vecmin(n)); \\ Antti Karttunen, Nov 17 2019
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150 - 1 = 0.705211... . - Amiram Eldar, Jan 05 2024