cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062977 Difference between largest and smallest positive exponent in prime factorization of n; a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 0, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Henry Bottomley, Jul 24 2001

Keywords

Examples

			a(24) = 2 since 24 = 2^3*3^1 and max(3,1) - min(3,1) = 3 - 1 = 2;
a(25) = 0 since 25 = 5^2 and max(2) - min(2) = 2 - 2 = 0.
		

Crossrefs

Cf. A072774 (positions of zeros), A059404 (of nonzeros).

Programs

  • Mathematica
    dlsp[n_]:=Module[{xp=FactorInteger[n][[All,2]]},Max[xp]-Min[xp]]; Join[ {0},Array[ dlsp,120]] (* Harvey P. Dale, Jan 28 2021 *)
  • PARI
    { for (n=1, 4000, if (n<2, M=m=0, f=factor(n)~; M=m=f[2, 1]; for (i=2, length(f), M=max(M, f[2, i]); m=min(m, f[2, i]))); write("b062977.txt", n, " ", M - m) ) } \\ Harry J. Smith, Aug 14 2009
    
  • PARI
    A062977(n) = if((1==n),0,n=(factor(n)[, 2]); vecmax(n)-vecmin(n)); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A051903(n) - A051904(n).
a(A108951(n)) = A325226(n) = A001222(n) - A071178(n). - Antti Karttunen, Nov 17 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150 - 1 = 0.705211... . - Amiram Eldar, Jan 05 2024