cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062988 a(n) = binomial(n+6,5) - 1.

Original entry on oeis.org

5, 20, 55, 125, 251, 461, 791, 1286, 2001, 3002, 4367, 6187, 8567, 11627, 15503, 20348, 26333, 33648, 42503, 53129, 65779, 80729, 98279, 118754, 142505, 169910, 201375, 237335, 278255, 324631
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 5}_{4}, n >= 0.

Crossrefs

Sixth column (r=5) of FS(5) staircase array A062985.
A column of triangle A014473.

Programs

  • Magma
    [Binomial(n+6,5) -1: n in [0..40]]; // G. C. Greubel, Apr 25 2024
    
  • Maple
    [seq(binomial(n+6,5)-1, n=0..35)]; # Zerinvary Lajos, Nov 25 2006
  • Mathematica
    Binomial[Range[6,45],5] -1 (* G. C. Greubel, Apr 25 2024 *)
  • PARI
    { for (n=0, 1000, write("b062988.txt", n, " ", binomial(n + 6, 5) - 1) ) } \\ Harry J. Smith, Aug 15 2009
    
  • SageMath
    [binomial(n+6,5) -1 for n in range(41)] # G. C. Greubel, Apr 25 2024

Formula

a(n) = A062985(n+2, 5).
a(n) = (n+1)*(n^4 + 19*n^3 + 136*n^2 + 444*n + 600)/5!.
G.f.: N(5;1, x)/(1-x)^6 with N(5;1, x)= 5 - 10*x + 10*x^2 - 5*x^3 + x^4 = (1-(1-x)^5)/x, polynomial of second row of A062986.
E.g.f.: (1/120)*(600 + 1800*x + 1200*x^2 + 300*x^3 + 30*x^4 + x^5)*exp(x). - G. C. Greubel, Apr 25 2024