cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A062990 Eighth column (r=7) of FS(5) staircase array A062985.

Original entry on oeis.org

5, 30, 110, 315, 771, 1688, 3396, 6390, 11385, 19382, 31746, 50297, 77415, 116160, 170408, 245004, 345933, 480510, 657590, 887799, 1183787, 1560504, 2035500, 2629250, 3365505, 4271670, 5379210, 6724085, 8347215
Offset: 0

Views

Author

Wolfdieter Lang, Jul 12 2001

Keywords

Comments

In the Frey-Sellers reference this sequence is called {(n+2) over 7}_{4}, n >= 0.

Crossrefs

Partial sums of A062989.

Programs

  • Maple
    [seq((binomial(n+7,n)-binomial(n+2,n)),n=1..29)]; # Zerinvary Lajos, Jun 23 2006
  • Mathematica
    Table[Binomial[n+7,n]-Binomial[n+2,n],{n,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{5,30,110,315,771,1688,3396,6390},30] (* Harvey P. Dale, Jun 09 2016 *)
  • PARI
    { for (n=0, 1000, m=n + 1; a=binomial(m + 7, m) - binomial(m + 2, m); write("b062990.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 15 2009

Formula

a(n) = A062985(n+2, 7) = (n+1)*(n+2)*(n+3)*(n^4 + 29*n^3 + 326*n^2 + 1744*n + 4200)/7!.
G.f.: N(5;1, x)/(1-x)^8 with N(5;1, x)= 5-10*x+10*x^2-5*x^3+x^4 = (1-(1-x)^5)/x polynomial of second row of A062986.
a(n) = binomial(n+7,n) - binomial(n+2,n). - Zerinvary Lajos, Jun 23 2006

Extensions

More terms from Zerinvary Lajos, Jun 23 2006