cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A232486 a(1) = 3; thereafter a(n+1) = a(n) + product of nonzero digits of a(n).

Original entry on oeis.org

3, 6, 12, 14, 18, 26, 38, 62, 74, 102, 104, 108, 116, 122, 126, 138, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362, 4506
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2013

Keywords

Crossrefs

Programs

  • Maple
    f:=proc(n) local t1,t2,i;
    t1:=convert(n,base,10);
    t2:=1;
    for i from 1 to nops(t1) do if t1[i] <> 0 then t2:=t2*t1[i]; fi; od;
    t2; end;
    g:=n->n+f(n);
    t1:=[3];
    for n from 1 to 50 do t1:=[op(t1),g(t1[nops(t1)])]; od:
    t1;

A030547 Number of terms (including the initial term) needed to reach a palindrome when the Reverse Then Add! map (x -> x + (x-with-digits-reversed)) is repeatedly applied to n, or -1 if a palindrome is never reached.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 3, 3, 2, 2, 2, 2, 2, 1, 2, 3, 3, 4, 2, 2, 2, 2, 3, 2, 1, 3, 4, 5, 2, 2, 2, 3, 2, 3, 3, 1, 5, 7, 2, 2, 3, 2, 3, 3, 4, 5, 1, 25, 2, 3, 2, 3, 3, 4, 5, 7, 25
Offset: 1

Views

Author

Keywords

Comments

It is conjectured that a(196) is the smallest term equal to -1. See A023108.

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, 702 pages. See Entry 196.

Crossrefs

Cf. A006960, A023108, A063018, etc.
Equals A033665(n) + 1.

Programs

  • Mathematica
    Table[Length@
      NestWhileList[# + IntegerReverse[#] &, n, ! PalindromeQ[#]  &], {n, 98}] (* Robert Price, Oct 18 2019 *)

Extensions

Edited by N. J. A. Sloane, May 09 2015

A383478 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(3,0),(0,1).

Original entry on oeis.org

1, 2, 9, 44, 220, 1134, 5950, 31608, 169488, 915420, 4972825, 27141036, 148711836, 817516196, 4506838380, 24906188912, 137933068572, 765324011736, 4253501563156, 23675286219200, 131955035141160, 736347621539310, 4113559552360230, 23003228298637080
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Main diagonal of A383477.
Cf. A063018.

Programs

  • Maple
    f:= proc(x,y) option remember;
         local t;
         t:= 0;
         if x >= 1 then t:= t + procname(x-1,y) fi;
         if x >= 2 then t:= t + procname(x-2,y) fi;
         if x >= 3 then t:= t + procname(x-3,y) fi;
         if y >= 1 then t:= t + procname(x,y-1) fi;
         t
    end proc:
    f(0,0):= 1:
    seq(f(n,n),n=0..25); # Robert Israel, May 28 2025

Formula

a(n) = [x^n] 1/(1 - x - x^2 - x^3)^(n+1).
a(n) = (n+1) * A063018(n+1).
Showing 1-3 of 3 results.