cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063019 Reversion of y - y^2 + y^3 - y^4.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 7, 22, 57, 132, 308, 793, 2223, 6328, 17578, 47804, 130169, 360924, 1019084, 2900484, 8252860, 23445510, 66717135, 190750110, 548178735, 1580970612, 4568275692, 13217653582, 38306172442, 111248832992, 323794993924, 944208641464, 2757606964409
Offset: 0

Views

Author

Olivier Gérard, Jul 05 2001

Keywords

Comments

Apparently: For n>0 number of Dyck (n-1)-paths with each ascent length equal to 0 or 1 modulo 4. - David Scambler, May 09 2012

Examples

			G.f. A(x) = x + x^2 + x^3 + x^4 + 2*x^5 + 7*x^6 + 22*x^7 + 57*x^8 + 132*x^9 + 308*x^10 + 793*x^11 + 2223*x^12 + 6328*x^13 + 17578*x^14 + ...
such that A(x - x^2 + x^3 - x^4) = x.
		

Crossrefs

Programs

  • Maple
    F:= RootOf(y-y^2+y^3-y^4=x,y):
    S:= series(F, x, 40):
    seq(coeff(S,x,n),n=0..39); # Robert Israel, Jan 08 2019
  • Mathematica
    CoefficientList[InverseSeries[Series[y - y^2 + y^3 - y^4, {y, 0, 30}], x], x]
    g[d_] := g[d] = If[OddQ[d], 3, 1]; f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x - 1, y, 0] + f[x, y - If[d == 0, 1, g[d]], If[d == 0, 1, g[d] + d]]]]; Join[{0}, Table[f[n - 1, n - 1, 0], {n, 30}]] (* David Scambler, May 09 2012 *)
  • Maxima
    a(n):=if n<2 then n else (-1)^(n+1)*sum((sum(binomial(j,n-3*k+2*j-1)*(-1)^(2*j-k)*binomial(k,j),j,0,k))*binomial(n+k-1,n-1),k,1,n-1)/n; /* Vladimir Kruchinin, May 10 2011 */
    
  • PARI
    my(x='x+O('x^66)); Vec(serreverse(x-x^2+x^3-x^4)) /* Joerg Arndt, May 12 2011 */
    
  • Sage
    # uses[Reversion from A063022]
    Reversion(x - x^2 + x^3 - x^4, 30) # Peter Luschny, Jan 08 2019

Formula

Conjecture: 32*n*(n-1)*(n-2)*a(n) -8*(n-1)*(n-2)*(16*n-9)*a(n-1) +2*(n-2)*(71*n^2+46*n-549)*a(n-2) +(97*n^3-2250*n^2+10859*n-14850)*a(n-3) -12*(4n-15)*(4*n-14)*(4*n-17)*a(n-4)=0. - R. J. Mathar, Oct 01 2012
Conjecture confirmed for n >= 5 using the fact that the g.f. satisfies
(24*x + 96)*g(x) + (-1104*x^2 - 1302*x + 456)*g'(x)
+ (-2688*x^3 - 1086*x^2 + 1086*x - 312)*g''(x)
+ (-768*x^4 + 97*x^3 + 142*x^2 - 128*x + 32)*g'''(x) = 6*x+24.
It is not true for n=4. - Robert Israel, Jan 08 2019
Recurrence: 16*(n-2)*(n-1)*n*(5*n-14)*a(n) = 4*(n-2)*(n-1)*(110*n^2 - 473*n + 468)*a(n-1) - (n-2)*(1015*n^3 - 6902*n^2 + 15391*n - 11232)*a(n-2) + 8*(2*n-5)*(4*n-13)*(4*n-11)*(5*n-9)*a(n-3). - Vaclav Kotesovec, Feb 12 2014
Conjecture: a(n+1) = (1/(n+1))*Sum_{k=0..floor(n/4)} binomial(n+1, n-4*k)*binomial(n+k, n) (compare to the formula from Peter Bala in A215340). - Joerg Arndt, Apr 01 2019
From Paul D. Hanna, Sep 01 2022: (Start)
G.f. A(x) satisfies:
A(x)^3 = A( x^3 + 3*x*(1-x)*A(x)^3 ), and
A(x)^3 = ( x^3 + 3*x*(1-x)*A(x)^3 ) * (1 + A(x)^3) / (1 - A(x)^12). (End)