A063183
Number of nonisomorphic cyclic subgroups of the group S_n X S_n (where S_n is the symmetric group of degree n).
Original entry on oeis.org
1, 1, 2, 4, 6, 11, 11, 20, 26, 37, 39, 59, 66, 97, 107, 120, 151, 203, 230, 303, 345, 381, 422, 542, 623, 737, 817, 963, 1074, 1328, 1480, 1798, 2097, 2275, 2518, 2702, 3071, 3630, 3973, 4295, 4770, 5614, 6253, 7294, 8020, 8676, 9421, 10913, 12136, 13577, 14871
Offset: 0
Set of orders of elements of S_8 X S_8 is {1,2,3,4,5,6,7,8,10,12,14,15,20,21,24, 28,30,35,40,42,56,60,70,84,105,120}, thus a(8) = 26.
A062364
Number of cyclic subgroups of the group A_n X A_n (where A_n is the alternating group of degree n).
Original entry on oeis.org
1, 1, 5, 80, 1232, 35402, 1194062, 70565000, 4701427880, 368268892232, 32176642615592, 4268310912989312, 538435375681984640, 93863308664587110560, 20096819872783656177632, 4630250413602884766388352, 1005800123495980918868450432, 286583083615434477248177406080
Offset: 1
A062365
Number of nonisomorphic cyclic subgroups of the group A_n X A_n (where A_n is the alternating group of degree n).
Original entry on oeis.org
1, 1, 2, 4, 7, 10, 17, 19, 27, 35, 54, 58, 85, 96, 106, 122, 171, 209, 272, 312, 339, 384, 504, 568, 668, 754, 867, 981, 1226, 1357, 1658, 1859, 1991, 2318, 2526, 2833, 3393, 3730, 3976, 4418, 5244, 5829, 6798, 7468, 7998, 8770, 10282, 11354, 12676, 13911
Offset: 1
Set of orders of elements of A_8 X A_8 is {1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 105}, thus a(8)=19.
Showing 1-3 of 3 results.