A063260 Sextinomial (also called hexanomial) coefficient array.
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780
Offset: 0
Examples
The irregular table T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1: 1 2: 1 1 1 1 1 1 3: 1 2 3 4 5 6 5 4 3 2 1 4: 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1 ...reformatted - _Wolfdieter Lang_, Oct 31 2015
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.
Links
- T. D. Noe, Rows n = 0..25, flattened
- Steven R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- Iain G. Johnston, Optimal strategies in the Fighting Fantasy gaming system: influencing stochastic dynamics by gambling with limited resource, arXiv:2002.10172 [cs.AI], 2020.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 4.
Crossrefs
Programs
-
Maple
#Define the r-nomial coefficients for r = 1, 2, 3, ... rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)): #Display the 6-nomials as a table r := 6: rows := 10: for n from 0 to rows do seq(rnomial(r,n,k), k = 0..(r-1)*n) end do; # Peter Bala, Sep 07 2013
-
Mathematica
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
-
PARI
concat(vector(5,k,Vec(sum(j=0,5,x^j)^k))) \\ M. F. Hasler, Jun 17 2012
Formula
G.f. for row n: (Sum_{j=0..5} x^j)^n.
G.f. for column k: (x^(ceiling(k/5)))*N6(k, x)/(1-x)^(k+1) with the row polynomials from the staircase array A063261(k, m) and with N6(6,x) = 5 - 10*x + 10*x^2 - 5*x^3 + x^4.
T(n, k) = 0 if n=-1 or k<0 or k >= 5*n + 1; T(0, 0)=1; T(n, k) = Sum_{j=0..5} T(n-1, k-j) else.
T(n, k) = Sum_{i = 0..floor(k/6)} (-1)^i*binomial(n,i)*binomial(n+k-1-6*i,n-1) for n >= 0 and 0 <= k <= 5*n. - Peter Bala, Sep 07 2013
T(n, k) = Sum_{i = max(0,ceiling((k-2*n)/3)).. min(n,k/3)} binomial(n,i)*trinomial(n,k-3*i) for n >= 0 and 0 <= k <= 5*n. - Matthew Monaghan, Sep 30 2015
Extensions
More terms and corrected recurrence from Nicholas M. Makin (NickDMax(AT)yahoo.com), Sep 13 2002
Comments