cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063267 Eighth column (k=7) of septinomial array A063265.

Original entry on oeis.org

6, 33, 116, 325, 786, 1709, 3424, 6426, 11430, 19437, 31812, 50375, 77506, 116265, 170528, 245140, 346086, 480681, 657780, 888009, 1184018, 1560757, 2035776, 2629550, 3365830, 4272021, 5379588, 6724491, 8347650
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Crossrefs

Cf. A000579 (column k=6 of A063265).

Programs

  • Maple
    [seq((binomial(n+7,n)-binomial(n+1,n)),n=1..29)]; # Zerinvary Lajos, Jun 23 2006
  • Mathematica
    Table[Binomial[n+7,n]-Binomial[n+1,n],{n,30}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{6,33,116,325,786,1709,3424,6426},30] (* Harvey P. Dale, Jan 06 2012 *)

Formula

a(n)= A063265(n+2, 7)= (n+1)*(n+2)*(n+10)*(n^4 + 22*n^3 + 193*n^2 + 792*n + 1512)/7!.
G.f.: (2-x)*(1-x+x^2)*(3-3*x+x^2)/(1-x)^8; the numerator polynomial is N7(7, x) = 6 - 15*x + 20*x^2 - 15*x^3 + 6*x^4 - x^5 from row n=7 of array A063266.
a(n) = binomial(n+7,n) - binomial(n+1,n). - Zerinvary Lajos, Jun 23 2006
a(n) = binomial(n+7,n) + binomial(n+6,n) + binomial(n+5,n) + binomial(n+4,n) + binomial(n+3,n) + binomial(n+2,n). - Zerinvary Lajos, Jun 23 2006
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8); a(0)=6, a(1)=33, a(2)=116, a(3)=325, a(4)=786, a(5)=1709, a(6)=3424, a(7)=6426. - Harvey P. Dale, Jan 06 2012

Extensions

More terms from Zerinvary Lajos, Jun 23 2006