cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063265 Septinomial (also called heptanomial) coefficient array.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 33, 36, 37, 36, 33, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 116, 149, 180, 206, 224, 231, 224, 206, 180, 149, 116, 84, 56, 35
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Comments

The sequence of step width of this staircase array is [1,6,6,...], hence the degree sequence for the row polynomials is [0,6,12,18,...]= A008588.
The column sequences (without leading zeros) are for k=0..6 those of the lower triangular array A007318 (Pascal) and for k=7..9: A063267, A063417, A063418. Row sums give A000420 (powers of 7). Central coefficients give A025012.

Examples

			Triangle begins:
  {1};
  {1, 1, 1, 1, 1, 1, 1};
  {1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1};
  ...
N7(k,x)= 1 for k=0..6, N7(7,x)= 6-15*x+20*x^2-15*x^3+6*x^4-x^5 (from A063266).
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.

Crossrefs

The q-nomial arrays are for q=2..8: A007318 (Pascal), A027907, A008287, A035343, A063260, A063265, A171890.

Programs

  • Maple
    #Define the r-nomial coefficients for r = 1, 2, 3, ...
    rnomial := (r,n,k) -> add((-1)^i*binomial(n,i)*binomial(n+k-1-r*i,n-1), i = 0..floor(k/r)):
    #Display the 7-nomials as a table
    r := 7:  rows := 10:
    for n from 0 to rows do
    seq(rnomial(r,n,k), k = 0..(r-1)*n)
    end do;
    # Peter Bala, Sep 07 2013
  • Mathematica
    Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)

Formula

a(n, k)=0 if n=-1 or k<0 or k >= 6*n; a(0, 0)=1; a(n, k)= sum(a(n-1, k-j), j=0..6) else.
G.f. for row n: (sum(x^j, j=0..6))^n.
G.f. for column k: (x^(ceiling(k/6)))*N7(k, x)/(1-x)^(k+1) with the row polynomials of the staircase array A063266(k, m).
T(n,k) = Sum_{i = 0..floor(k/7)} (-1)^i*binomial(n,i)*binomial(n+k-1-7*i,n-1) for n >= 0 and 0 <= k <= 6*n. - Peter Bala, Sep 07 2013

A063417 Ninth column (k=8) of septinomial array A063265.

Original entry on oeis.org

5, 36, 149, 470, 1251, 2954, 6371, 12789, 24210, 43637, 75438, 125801, 203294, 319545, 490058, 735182, 1081251, 1561914, 2219675, 3107664, 4291661, 5852396, 7888149, 10517675, 13883480, 18155475, 23535036
Offset: 0

Views

Author

Wolfdieter Lang, Jul 24 2001

Keywords

Crossrefs

Cf. A063267.

Programs

  • Mathematica
    Table[Total[Table[Binomial[n+2,i],{i,2,8}]{5,21,35,35,21,7,1}],{n,0,30}] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{5,36,149,470,1251,2954,6371,12789,24210},30] (* Harvey P. Dale, Aug 22 2012 *)

Formula

a(n) = A063265(n+2,8) = (n+1)*(n+2)*(n^6 +41*n^5 +701*n^4 +6439*n^3 +33930*n^2 +100008*n +100800)/8!.
G.f.: (5-9*x+5*x^2+5*x^3-9*x^4+5*x^5-x^6)/(1-x)^9; the numerator polynomial is N6(8,x) from row n=8 of array A063266.
a(n) = 5*C(n+2,2) + 21*C(n+2,3) + 35*C(n+2,4) + 35*C(n+2,5) + 21*C(n+2,6) + 7*C(n+2,7) + C(n+2,8) (see comment in A213889). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(0)=5, a(1)=36, a(2)=149, a(3)=470, a(4)=1251, a(5)=2954, a(6)=6371, a(7)=12789, a(8)=24210, a(n)=9*a(n-1)-36*a(n-2)+84*a(n-3)- 126*a(n-4)+ 126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-9). - Harvey P. Dale, Aug 22 2012

A213745 Triangle of numbers C^(6)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 6 appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1709, 1, 8, 36, 120, 330, 792, 1716, 3424, 6371, 1, 9, 45, 165, 495, 1287, 3003, 6426, 12789, 23905, 1, 10
Offset: 0

Views

Author

Keywords

Comments

For k<=5, the triangle coincides with triangle A213744.
We have over columns of the triangle: T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A000389(n) for n>=9, T(n,6)=A000579(n) for n>=11, T(n,7)=A063267 for n>=5, T(n,8)=A063417 for n>=6, T(n,9)=A063418 for n>=7.

Examples

			Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....35
.5..|..1.....5....15....35....70....126
.6..|..1.....6....21....56...126....252...462
.7..|..1.....7....28....84...210....462...924....1709
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[7] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(6)(n,k)=sum{r=0,...,floor(k/7)}(-1)^r*C(n,r)*C(n-7*r+k-1, n-1).
A generalization. The numbers C^(t)(n,k) of combinations with repetitions from n different elements over k, for each of them not more than t>=1 appearances allowed, are enumerated by the formula:
C^(t)(n,k)=sum{r=0,...,floor(k/(t+1))}(-1)^r*C(n,r)*C(n-(t+1)*r+k-1, n-1).
In case t=1, it is binomial coefficient C^(t)(n,k)=C(n,k), and we have the combinatorial identity: sum{r=0,...,floor(k/2)}(-1)^r*C(n,r)*C(n-2*r+k-1, n-1)=C(n,k). On the other hand, if t=n, then r=0, and for the corresponding numbers of combinations with repetitions without a restriction on appearances of elements we obtain a well known formula C(n+k-1, n-1) (cf. triangle A059481).
In addition, note that, if k<=t, then C^(t)(n,k)=C(n+k-1, n-1). Therefore, triangle {C^(t+1)(n,k)} coincides with the previous triangle {C^(t)(n,k)} for k<=t.
Showing 1-3 of 3 results.