A063375 Number of divisors of Fibonacci(n).
1, 1, 2, 2, 2, 4, 2, 4, 4, 4, 2, 15, 2, 4, 8, 8, 2, 16, 4, 16, 8, 4, 2, 72, 6, 4, 16, 16, 2, 64, 4, 16, 8, 4, 8, 160, 8, 8, 8, 64, 4, 64, 2, 32, 32, 8, 2, 336, 8, 48, 8, 16, 4, 128, 16, 96, 32, 8, 4, 960, 4, 8, 32, 64, 8, 64, 8, 32, 32, 128, 4, 1536, 4, 16, 48, 32, 16, 128, 4, 512, 128, 8
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1408 (terms 1..1000 from T. D. Noe using Blair Kelly's data)
- Blair Kelly, Fibonacci and Lucas Factorizations.
- Florian Luca, Arithmetic Functions of Fibonacci Numbers, The Fibonacci Quarterly, Vol. 37, No. 3 (1999), pp. 265-268.
Programs
-
Mathematica
Table[Length[Divisors[Fibonacci[n]]], {n, 120}] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *) Table[DivisorSigma[0, Fibonacci[n]], {n, 1, 100}] (* Vaclav Kotesovec, Feb 13 2019 *)
-
PARI
j=[]; for(n=1,150,j=concat(j,numdiv(fibonacci(n)))); j
-
PARI
for (n = 1, 466, write("b063375.txt", n, " ", numdiv(fibonacci(n)))) \\ Harry J. Smith, Aug 20 2009
Formula
a(n) >= A000045(A000005(n)), with equality if and only if n = 1, 2 or 4 (Luca, 1999). - Amiram Eldar, Jan 12 2022