cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A154906 Records in (A063375: Number of divisors of Fibonacci(n)).

Original entry on oeis.org

1, 2, 4, 15, 16, 72, 160, 336, 960, 1536, 1920, 2048, 3072, 3200, 36864, 110592, 163840, 1376256, 1474560, 2064384, 50331648, 62914560, 100663296, 603979776, 3623878656, 15032385536, 51539607552, 115964116992, 206158430208, 4123168604160, 8658654068736, 21990232555520, 118747255799808
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Crossrefs

Extensions

Edited by Omar E. Pol, Jan 20 2009
a(22)-a(33) from Amiram Eldar, Oct 14 2019

A154907 Where records occur in (A063375: Number of divisors of Fibonacci(n)).

Original entry on oeis.org

1, 3, 6, 12, 18, 24, 36, 48, 60, 72, 84, 90, 96, 108, 120, 168, 180, 240, 300, 336, 360, 420, 480, 504, 600, 720, 792, 840, 1050, 1080, 1200, 1260, 1320
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009

Keywords

Crossrefs

Extensions

Edited by Omar E. Pol, Jan 20 2009
a(19)-a(28) (using b-file at A063375) from Jon E. Schoenfield, Jun 23 2017
a(29)-a(33) from Amiram Eldar, Oct 14 2019

A133021 Irregular triangle read by rows: row n lists divisors of n-th Fibonacci number A000045(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 5, 1, 2, 4, 8, 1, 13, 1, 3, 7, 21, 1, 2, 17, 34, 1, 5, 11, 55, 1, 89, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144, 1, 233, 1, 13, 29, 377, 1, 2, 5, 10, 61, 122, 305, 610, 1, 3, 7, 21, 47, 141, 329, 987, 1, 1597
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2007

Keywords

Examples

			Triangle begins:
    [ 1 ],
    [ 1 ],
    [ 1, 2 ],
    [ 1, 3 ],
    [ 1, 5 ],
    [ 1, 2, 4, 8 ],
    [ 1, 13 ],
    [ 1, 3, 7, 21 ],
    [ 1, 2, 17, 34 ],
    [ 1, 5, 11, 55 ],
    [ 1, 89 ],
		

Crossrefs

Cf. A000045 (Fibonacci numbers), A027750, A063375 (row lengths).

Programs

  • Magma
    /* As triangle */ [Divisors(Fibonacci(n)): n in [1..30]]; // Vincenzo Librandi, Nov 15 2024
  • Mathematica
    Flatten[Table[Divisors[Fibonacci[n]], {n, 20}]] (* T. D. Noe, Mar 14 2014 *)

A278245 Least number with the same prime signature as the n-th Fibonacci number: a(n) = A046523(A000045(n)).

Original entry on oeis.org

1, 1, 2, 2, 2, 8, 2, 6, 6, 6, 2, 144, 2, 6, 30, 30, 2, 120, 6, 210, 30, 6, 2, 10080, 12, 6, 210, 210, 2, 9240, 6, 210, 30, 6, 30, 166320, 30, 30, 30, 30030, 6, 9240, 2, 2310, 2310, 30, 2, 2882880, 30, 4620, 30, 210, 6, 120120, 210, 60060, 2310, 30, 6, 232792560, 6, 30, 2310, 30030, 30, 9240, 30, 2310, 2310, 510510, 6, 1396755360, 6, 210, 4620, 2310, 210, 120120, 6
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2016

Keywords

Comments

This sequence can be used as a filter for certain sequences involving Fibonacci numbers as it matches to any sequence that is obtained as f(A000045(n)), where f(n) is any function that depends only on the prime signature of n (see the index entry for "sequences computed from exponents in ...").
Matching in this context means that the sequence a matches with the sequence b iff for all i, j: a(i) = a(j) => b(i) = b(j). In other words, iff the sequence b partitions the natural numbers to the same or coarser equivalence classes (as/than the sequence a) by the distinct values it obtains.

Examples

			From _Michael De Vlieger_, May 18 2017: (Start)
a(6) = 8 because Fibonacci(6) = 8, the multiplicity of the prime factor of 8 is 3; the smallest p^3 = 2^3 = 8.
a(7) = 2 because Fibonacci(7) = 13, the multiplicity of the prime factor of 13 is 1; the smallest p^1 = 2^1 = 2.
a(15) = 30 because Fibonacci(15) = 610. The multiplicities of the prime factors of 610, in order from greatest to least, are {1, 1, 1}, the smallest prime power product p^1 * q^1 * r^1 = 2 * 3 * 5 = 30.
a(18) = 120 because Fibonacci(18) = 2584 = 2^3 * 17 * 19 -> 2^3 * 3 * 5 = 120. (End)
		

Crossrefs

Cf. A286545 (rgs-version of this sequence), A286467.
Cf. A001605 (positions of 2's), A072381 (of 6's).
Sequences with matching equivalence classes: A063375, A105307, A152774.

Programs

  • Mathematica
    Table[If[# == 1, 1, Times @@ MapIndexed[Prime[First[#2]]^#1 &,
    Sort[FactorInteger[#][[All, -1]], Greater]]] &@ Fibonacci@ n, {n, 79}] (* Michael De Vlieger, May 18 2017 *)
  • PARI
    A046523(n) = my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]) \\ From Charles R Greathouse IV, Aug 17 2011
    f0 = 0; f1 = 1; for(n=1, 10000, write("b278245.txt", n, " ", A046523(f1)); old_f0 = f0; f0 = f1; f1 = f1 + old_f0; );
    
  • Scheme
    (define (A278245 n) (A046523 (A000045 n)))

Formula

a(n) = A046523(A000045(n)).

A076984 Number of Fibonacci numbers that are divisors of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 2, 5, 2, 3, 4, 4, 2, 5, 2, 5, 4, 3, 2, 7, 3, 3, 4, 5, 2, 7, 2, 5, 4, 3, 4, 8, 2, 3, 4, 7, 2, 7, 2, 5, 6, 3, 2, 9, 3, 5, 4, 5, 2, 7, 4, 7, 4, 3, 2, 11, 2, 3, 6, 6, 4, 7, 2, 5, 4, 7, 2, 11, 2, 3, 6, 5, 4, 7, 2, 9, 5, 3, 2, 11, 4, 3, 4, 7, 2, 11, 4, 5, 4, 3, 4, 11, 2, 5, 6, 8, 2, 7, 2
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

a(A001605(n)) = 2; a(A105802(n)) = n.
It is well known that if k is a divisor of n then F(k) divides F(n). Hence if n has d divisors, one expects that a(n)=d. However because F(1)=F(2)=1, there is one fewer Fibonacci divisor when n is even. So for even n, a(n)=d-1. - T. D. Noe, Jan 18 2006

Examples

			n=12, A000045(12)=144: 5 of the 15 divisors of 144 are also Fibonacci numbers, a(12) = #{1, 2, 3, 8, 144} = 5.
		

Crossrefs

Programs

  • Maple
    with(combinat, fibonacci):a[1] := 1:for i from 2 to 229 do s := 0:for j from 2 to i do if((fibonacci(i) mod fibonacci(j))=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l],l=2..229);
  • Mathematica
    Table[s=DivisorSigma[0, n]; If[OddQ[n], s, s-1], {n, 100}] (Noe)
  • PARI
    {a(n)=if(n<1, 0, numdiv(n)+n%2-1)} /* Michael Somos, Sep 03 2006 */
    
  • PARI
    {a(n)=if(n<1, 0, sumdiv(n,d, d!=2))} /* Michael Somos, Sep 03 2006 */

Formula

a(n) = A023645(n) + 1. - T. D. Noe, Jan 18 2006
a(n) = tau(n) - [n is even] = A000005(n) - A059841(n). Proof: gcd(Fib(m), Fib(n)) = Fib(gcd(m, n)) and Fib(2) = 1. - Olivier Wittenberg, following a conjecture of Ralf Stephan, Sep 28 2004
The number of divisors of n excluding 2.
a(2n) = A066660(n). a(2n-1) = A099774(n). - Michael Somos, Sep 03 2006
a(3*2^(Prime(n-1)-1)) = 2n + 1 for n > 3. a(3*2^A068499[n]) = 2n + 1, where A068499(n) = {1,2,3,4,6,10,12,16,18,...}. - Alexander Adamchuk, Sep 15 2006

Extensions

Corrected and extended by Sascha Kurz, Jan 26 2003
Edited by N. J. A. Sloane, Sep 14 2006. Some of the comments and formulas may need to be adjusted to reflect the new offset.

A139589 Fibonacci numbers with Fibonacci number of divisors.

Original entry on oeis.org

1, 1, 2, 3, 5, 13, 89, 233, 610, 987, 1597, 10946, 28657, 514229, 3524578, 9227465, 24157817, 39088169, 63245986, 433494437, 1836311903, 2971215073, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

A000005(a(n)) is a Fibonacci number.
For the terms shown here (in the Data section) the number of divisors is 1 or 2 or 8. - Emeric Deutsch, May 12 2008
Up to n = 104 the number of divisors is still 1, 2 or 8. - Amiram Eldar, Oct 15 2019

Crossrefs

Programs

  • Maple
    A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2),x=0,n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139589 := proc(n) RETURN(isA000045(n) and isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139589(a000045) then printf("%d,",a000045) ; fi ; od: # R. J. Mathar, May 11 2008
    with(combinat): with(numtheory): F:={seq(fibonacci(k),k=1..100)}: a:=proc(n) if member(tau(fibonacci(n)),F)=true then fibonacci(n) else end if end proc: seq(a(n),n=1..70); # Emeric Deutsch, May 12 2008
  • Mathematica
    With[{s = Array[Fibonacci, 80]}, Select[s, ! FreeQ[s, DivisorSigma[0, #]] &]] (* Michael De Vlieger, Oct 15 2019 *)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 11 2008

A366782 Number of divisors of A000073(n) (tribonacci numbers).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 8, 6, 5, 2, 4, 24, 6, 8, 21, 16, 3, 8, 16, 12, 8, 12, 8, 6, 12, 12, 8, 80, 12, 24, 168, 20, 16, 12, 144, 24, 32, 16, 128, 12, 4, 16, 4, 32, 32, 16, 96, 320, 4, 48, 72, 216, 8, 32, 256, 48, 4, 8, 32, 48, 384, 32, 96, 576, 12, 4, 16, 36, 8, 8
Offset: 2

Views

Author

Sean A. Irvine, Oct 22 2023

Keywords

Examples

			a(8)=8 because the 8th tribonacci number 24 has divisors {1, 2, 3, 4, 6, 8, 12, 24}.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0, LinearRecurrence[{1, 1, 1}, {1, 1, 2}, 70]] (* Amiram Eldar, Oct 23 2023 *)

Formula

a(n) = A000005(A000073(n)).

A139590 Fibonacci numbers with a non-Fibonacci number of divisors.

Original entry on oeis.org

8, 21, 34, 55, 144, 377, 2584, 4181, 6765, 17711, 46368, 75025, 121393, 196418, 317811, 832040, 1346269, 2178309, 5702887, 14930352, 102334155, 165580141, 267914296, 701408733, 1134903170, 4807526976, 12586269025, 32951280099
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

A000005(a(n)) is a non-Fibonacci number A001690.

Examples

			34 belongs to the sequence because the number of its divisors, 4, is not a Fibonacci number.
		

Crossrefs

Programs

  • Maple
    A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2),x=0,n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139590 := proc(n) RETURN(isA000045(n) and not isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139590(a000045) then printf("%d,",a000045) ; fi ; od: # R. J. Mathar, May 11 2008
    with(combinat): with(numtheory): F:={seq(fibonacci(j),j=1..30)}: a:= proc(n) if member(tau(fibonacci(n)),F) = false then fibonacci(n) else end if end proc: seq(a(n),n=1..50); # Emeric Deutsch
  • Mathematica
    With[{fibs=Fibonacci[Range[60]]},Transpose[Select[Thread[{fibs, DivisorSigma[ 0,fibs]}], !MemberQ[ fibs,#[[2]]]&]][[1]]] (* Harvey P. Dale, Aug 04 2013 *)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 11 2008

A154908 Highly composite Fibonacci numbers.

Original entry on oeis.org

1, 2, 8, 144, 2584, 46368, 14930352, 4807526976, 1548008755920, 498454011879264, 160500643816367088, 2880067194370816120, 51680708854858323072, 16641027750620563662096, 5358359254990966640871840
Offset: 1

Views

Author

Omar E. Pol, Jan 18 2009, Jan 20 2009

Keywords

Comments

Positive Fibonacci numbers with record values for the number of divisors.

Examples

			144 is in the sequence because it is a Fibonacci number with 15 divisors and all smaller Fibonacci numbers have fewer divisors. - _Emeric Deutsch_, Jan 20 2009
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat): a := proc (n) if n = 1 then 1 else if max(seq(tau(fibonacci(j)), j = 1 .. n-1)) < tau(fibonacci(n)) then fibonacci(n) else end if end if end proc: seq(a(n), n = 1 .. 170); # Emeric Deutsch, Jan 20 2009
  • Mathematica
    DeleteDuplicates[{#,DivisorSigma[0,#]}&/@Fibonacci[Range[200]],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Aug 10 2025 *)

Extensions

Extended by Emeric Deutsch, Jan 20 2009

A160683 Numbers n >= 1 such that A000045(n)/A000005(A000045(n)) is an integer.

Original entry on oeis.org

1, 2, 3, 6, 24, 48
Offset: 1

Views

Author

Ctibor O. Zizka, May 23 2009

Keywords

Comments

No further term between 48 and 320. - R. J. Mathar, Apr 01 2011
This sequence is complete. For proof see the Luca-Young paper in links section, pages 7-10. - Altug Alkan, Apr 26 2016

Crossrefs

Programs

  • Maple
    with(combinat):with(numtheory): A160683 := proc(n) option remember: local k: if(n=1)then return 1:fi: for k from procname(n-1)+1 do if(fibonacci(k) mod tau(fibonacci(k))=0)then return k:fi: od: end: seq(A160683(n), n=1..6); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Select[Range@ 120, IntegerQ[#/DivisorSigma[0, #]] &@ Fibonacci@ # &]
  • PARI
    isok(n) = my(f=fibonacci(n)); f % numdiv(f) == 0; \\ Michel Marcus, Jul 31 2015

Formula

{n: A063375(n) | A000045(n)} . - R. J. Mathar, Apr 01 2011
Showing 1-10 of 31 results. Next