cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A139044 Smallest prime divisor of the Fibonacci numbers > 1.

Original entry on oeis.org

2, 3, 5, 2, 13, 3, 2, 5, 89, 2, 233, 13, 2, 3, 1597, 2, 37, 3, 2, 89, 28657, 2, 5, 233, 2, 3, 514229, 2, 557, 3, 2, 1597, 5, 2, 73, 37, 2, 3, 2789, 2, 433494437, 3, 2, 139, 2971215073, 2, 13, 5, 2, 3, 953, 2, 5, 3, 2, 59, 353, 2, 4513, 557, 2, 3, 5, 2, 269, 3, 2, 5, 6673, 2
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2008

Keywords

Comments

Fibonacci number > 1, divided by its largest proper divisor.

Crossrefs

Programs

  • Magma
    [Minimum(PrimeDivisors(Fibonacci(n+2))): n in [1..70]]; // Vincenzo Librandi, Dec 24 2016
  • Maple
    with(numtheory): with(combinat): a:=proc(n) options operator, arrow: op(2, divisors(fibonacci(n))) end proc: seq(a(n),n=3..60); # Emeric Deutsch, May 02 2008
  • Mathematica
    First[First[FactorInteger[ # ]]]&/@Fibonacci[Range[3,40]] (* Harvey P. Dale, Apr 30 2008 *)
  • PARI
    a(n) = factor(fibonacci(n+2))[1,1]; \\ Michel Marcus, Nov 15 2014
    

Formula

a(n) = A000045(n+2)/A032742(A000045(n+2)) = A000045(n+2)/A139045(n).
a(n) = A020639(A000045(n+2)). - Michel Marcus, Nov 15 2014
a(n) = A060383(n+2). - Alois P. Heinz, Oct 11 2015

Extensions

More terms from Emeric Deutsch and Harvey P. Dale, May 02 2008
More terms from Vincenzo Librandi, Dec 24 2016

A139589 Fibonacci numbers with Fibonacci number of divisors.

Original entry on oeis.org

1, 1, 2, 3, 5, 13, 89, 233, 610, 987, 1597, 10946, 28657, 514229, 3524578, 9227465, 24157817, 39088169, 63245986, 433494437, 1836311903, 2971215073, 7778742049, 20365011074, 591286729879, 4052739537881, 17167680177565, 44945570212853
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

A000005(a(n)) is a Fibonacci number.
For the terms shown here (in the Data section) the number of divisors is 1 or 2 or 8. - Emeric Deutsch, May 12 2008
Up to n = 104 the number of divisors is still 1, 2 or 8. - Amiram Eldar, Oct 15 2019

Crossrefs

Programs

  • Maple
    A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2),x=0,n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139589 := proc(n) RETURN(isA000045(n) and isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139589(a000045) then printf("%d,",a000045) ; fi ; od: # R. J. Mathar, May 11 2008
    with(combinat): with(numtheory): F:={seq(fibonacci(k),k=1..100)}: a:=proc(n) if member(tau(fibonacci(n)),F)=true then fibonacci(n) else end if end proc: seq(a(n),n=1..70); # Emeric Deutsch, May 12 2008
  • Mathematica
    With[{s = Array[Fibonacci, 80]}, Select[s, ! FreeQ[s, DivisorSigma[0, #]] &]] (* Michael De Vlieger, Oct 15 2019 *)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 11 2008

A139045 Largest proper divisor of the Fibonacci numbers > 1.

Original entry on oeis.org

1, 1, 1, 4, 1, 7, 17, 11, 1, 72, 1, 29, 305, 329, 1, 1292, 113, 2255, 5473, 199, 1, 23184, 15005, 521, 98209, 105937, 1, 416020, 2417, 726103, 1762289, 3571, 1845493, 7465176, 330929, 1056437, 31622993, 34111385, 59369, 133957148, 1, 233802911, 567451585
Offset: 3

Views

Author

Omar E. Pol, Apr 23 2008

Keywords

Comments

See the list of divisors of positive Fibonacci numbers in the triangle A133021.
See the largest proper divisor of n in A032742.
Fibonacci(1)=Fibonacci(2)=1 do not have proper divisors. - Emeric Deutsch, May 18 2008

Examples

			a(9) = 17 because the 9th Fibonacci number is 34 and the divisors of 34 are 1, 2, 17, 34, then the largest proper divisor of 34 is 17.
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a:=proc(n) options operator, arrow: op(tau(fibonacci(n))-1, divisors(fibonacci(n))) end proc: seq(a(n),n=3..40); # Emeric Deutsch, May 18 2008
    # second Maple program:
    a:= n-> (f-> f/min(numtheory[factorset](f)))((<<0|1>, <1|1>>^n)[1, 2]):
    seq(a(n), n=3..47);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    lpd[n_]:=Divisors[n][[-2]]; lpd/@(Fibonacci[Range[3,40]]) (* Harvey P. Dale, Mar 29 2015 *)

Formula

a(n) = A032742(A000045(n)).
a(n) = A000045(n)/A060383(n). - Alois P. Heinz, Sep 03 2019

Extensions

More terms from Emeric Deutsch, May 18 2008

A139590 Fibonacci numbers with a non-Fibonacci number of divisors.

Original entry on oeis.org

8, 21, 34, 55, 144, 377, 2584, 4181, 6765, 17711, 46368, 75025, 121393, 196418, 317811, 832040, 1346269, 2178309, 5702887, 14930352, 102334155, 165580141, 267914296, 701408733, 1134903170, 4807526976, 12586269025, 32951280099
Offset: 1

Views

Author

Omar E. Pol, May 09 2008

Keywords

Comments

A000005(a(n)) is a non-Fibonacci number A001690.

Examples

			34 belongs to the sequence because the number of its divisors, 4, is not a Fibonacci number.
		

Crossrefs

Programs

  • Maple
    A000045 := proc(n) option remember ; coeftayl( x/(1-x-x^2),x=0,n) ; end: isA000045 := proc(n) local a; for a from 0 do if A000045(a) > n then RETURN(false) ; elif A000045(a)=n then RETURN(true) ; fi ; od: end: A000005 := proc(n) numtheory[tau](n) ; end: isA139590 := proc(n) RETURN(isA000045(n) and not isA000045(A000005(n))) ; end: for i from 1 to 130 do a000045 := A000045(i) ; if isA139590(a000045) then printf("%d,",a000045) ; fi ; od: # R. J. Mathar, May 11 2008
    with(combinat): with(numtheory): F:={seq(fibonacci(j),j=1..30)}: a:= proc(n) if member(tau(fibonacci(n)),F) = false then fibonacci(n) else end if end proc: seq(a(n),n=1..50); # Emeric Deutsch
  • Mathematica
    With[{fibs=Fibonacci[Range[60]]},Transpose[Select[Thread[{fibs, DivisorSigma[ 0,fibs]}], !MemberQ[ fibs,#[[2]]]&]][[1]]] (* Harvey P. Dale, Aug 04 2013 *)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, May 11 2008

A238899 Irregular triangle read by rows: row n lists divisors of n-th Lucas number A000032(n).

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 4, 1, 7, 1, 11, 1, 2, 3, 6, 9, 18, 1, 29, 1, 47, 1, 2, 4, 19, 38, 76, 1, 3, 41, 123, 1, 199, 1, 2, 7, 14, 23, 46, 161, 322, 1, 521, 1, 3, 281, 843, 1, 2, 4, 11, 22, 31, 44, 62, 124, 341, 682, 1364, 1, 2207, 1, 3571, 1, 2, 3, 6, 9, 18, 27, 54
Offset: 0

Views

Author

T. D. Noe, Mar 14 2014

Keywords

Comments

Note that, in general, the Lucas numbers have fewer divisors than Fibonacci numbers. Why?

Examples

			Triangle begins:
  1,   2;
  1;
  1,   3;
  1,   2,  4;
  1,   7;
  1,  11;
  1,   2,  3,   6,  9, 18;
  1,  29;
  1,  47;
  1,   2,  4,  19, 38, 76;
  1,   3, 41, 123;
  1, 199;
  1,   2,  7,  14, 23, 46, 161, 322;
  ...
		

Crossrefs

Cf. A000032 (Lucas numbers), A027750.
Cf. A133021 (similar triangle for Fibonacci numbers).
Column 2 gives A280104 (for n>=2).

Programs

  • Magma
    [Divisors(Lucas(n)): n in [0..30]]; // Vincenzo Librandi, Nov 15 2024
  • Mathematica
    Flatten[Table[Divisors[LucasL[n]], {n, 0, 20}]] (* Typo corrected by Harvey P. Dale, Jun 29 2021 *)

A138881 Array read by rows: row n lists divisors of n-th positive triangular number A000217(n).

Original entry on oeis.org

1, 1, 3, 1, 2, 3, 6, 1, 2, 5, 10, 1, 3, 5, 15, 1, 3, 7, 21, 1, 2, 4, 7, 14, 28, 1, 2, 3, 4, 6, 9, 12, 18, 36, 1, 3, 5, 9, 15, 45, 1, 5, 11, 55, 1, 2, 3, 6, 11, 22, 33, 66, 1, 2, 3, 6, 13, 26, 39, 78, 1, 7, 13, 91, 1, 3, 5, 7, 15, 21, 35, 105
Offset: 1

Views

Author

Omar E. Pol, Apr 11 2008

Keywords

Examples

			Array begins:
1
1, 3
1, 2, 3, 6
1, 2, 5, 10
1, 3, 5, 15
1, 3, 7, 21
1, 2, 4, 7, 14, 28
		

Crossrefs

A269065 Irregular triangle read by rows: row n lists divisors of n-th composite number.

Original entry on oeis.org

1, 2, 4, 1, 2, 3, 6, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 10, 1, 2, 3, 4, 6, 12, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 8, 16, 1, 2, 3, 6, 9, 18, 1, 2, 4, 5, 10, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 2, 3, 4, 6, 8, 12, 24, 1, 5, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 2, 4, 7, 14, 28, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 4, 8, 16, 32, 1, 3, 11, 33, 1, 2, 17, 34
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 21 2016

Keywords

Comments

Subsequence of A027750.
Row sums give A073255.
Right border gives A002808.

Examples

			Triangle begins:
1,  2,  4;
1,  2,  3,  6;
1,  2,  4,  8;
1,  3,  9;
1,  2,  5,  10;
1,  2,  3,  4,  6,  12;
1,  2,  7,  14;
1,  3,  5,  15
1,  2,  4,  8,  16;
1,  2,  3,  6,  9,  18;
1,  2,  4,  5,  10, 20;
1,  3,  7,  21;
1,  2,  11, 22;
1,  2,  3,  4,  6,  8,  12, 24;
1,  5,  25;
1,  2,  13, 26;
1,  3,  9,  27;
1,  2,  4,  7,  14, 28;
1,  2,  3,  5,  6,  10, 15, 30;
1,  2,  4,  8,  16, 32;
1,  3,  11, 33;
1,  2,  17, 34;
...
		

Crossrefs

Cf. A002808, A027750, A035004 (row length), A133021, A133031, A138881.

Programs

  • Mathematica
    Flatten[Table[Divisors[Composite[n]], {n, 22}]]
  • PARI
    tabf(nn) =  forcomposite(c=1, nn, print(divisors(c), ", ")); \\ Michel Marcus, Feb 21 2016

A335534 a(n) = tribonacci(n) modulo Fibonacci(n).

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 0, 3, 10, 26, 60, 130, 38, 173, 485, 175, 977, 273, 2789, 2065, 336, 15149, 22718, 39800, 5226, 54214, 2323, 251416, 418400, 93831, 977776, 1518664, 261912, 5208104, 2557037, 3549042, 21177270, 11203146, 36247269, 87596844, 44950918, 261069681
Offset: 1

Views

Author

Richard Peterson, Jun 12 2020

Keywords

Comments

a(n) is congruent to tribonacci(n) modulo k if Fibonacci(n) is divisible by k, although the converse does not hold.

Examples

			For n=10, since tribonacci(10)=81 and Fibonacci(10)=55, a(10)=81 modulo 55 = 26.
		

Crossrefs

Programs

  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3] mod (<<0|1>, <1|1>>^n)[1, 2]:
    seq(a(n), n=1..45);  # Alois P. Heinz, Aug 19 2020
  • Mathematica
    m = 42; Mod[LinearRecurrence[{1, 1, 1}, {0, 1, 1}, m], Array[Fibonacci, m]] (* Amiram Eldar, Aug 19 2020 *)
  • PARI
    t(n) = ([0, 1, 0; 0, 0, 1; 1, 1, 1]^n)[1, 3]; \\ A000073
    a(n) = t(n) % fibonacci(n); \\ Michel Marcus, Aug 19 2020

A386994 Number of 2-dense sublists of divisors of the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 2, 4, 2, 4, 2, 1, 2, 4, 4, 8, 2, 3, 4, 8, 4, 4, 2, 1, 6, 4, 4, 12, 2, 1, 4, 16, 4, 4, 8, 1, 8, 8, 4, 3, 4, 1, 2, 11, 6, 8, 2, 1, 8, 10, 4, 12, 4, 3, 13, 5, 10, 8, 4, 1, 4, 8, 10, 17, 8, 7, 8, 20, 9, 15, 4, 1, 4, 16, 18, 24, 15, 7, 4, 3, 5
Offset: 0

Views

Author

Omar E. Pol, Aug 27 2025

Keywords

Comments

In a sublist of divisors of k the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of k.
The 2-dense sublists of divisors of k are the maximal sublists whose terms increase by a factor of at most 2.

Examples

			For n = 18 the 18th Fibonacci number is 2584. The list of divisors of 2584 is [1, 2, 4, 8, 17, 19, 34, 38, 68, 76, 136, 152, 323, 646, 1292, 2584]. There are three 2-dense sublists of divisors of 2584, they are [1, 2, 4, 8], [17, 19, 34, 38, 68, 76, 136, 152] and [323, 646, 1292, 2584], so a(18) = 3.
		

Crossrefs

Programs

  • Mathematica
    A386994[n_] := Length[Split[Divisors[Fibonacci[n]], #2 <= 2*# &]];
    Array[A386994, 100, 0] (* Paolo Xausa, Sep 02 2025 *)

Formula

a(n) = A237271(A000045(n)), n >= 1. (conjectured).

Extensions

More terms from Alois P. Heinz, Aug 27 2025

A139227 Array read by rows: row n lists the proper divisors of n-th Fibonacci number A000045(n).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 1, 3, 7, 1, 2, 17, 1, 5, 11, 1, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 1, 1, 13, 29, 1, 2, 5, 10, 61, 122, 305, 1, 3, 7, 21, 47, 141, 329, 1, 1, 2, 4, 8, 17, 19, 34, 38, 68, 76, 136, 152, 323, 646, 1292
Offset: 3

Views

Author

Omar E. Pol, Apr 28 2008

Keywords

Examples

			Row ....... Array begins
===========================================================
3 ......... 1
4 ......... 1
5 ......... 1
6 ......... 1, 2, 4
7 ......... 1
8 ......... 1, 3, 7
9 ......... 1, 2, 17
10 ........ 1, 5, 11
11 ........ 1
12 ........ 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72
13 ........ 1
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Most@ Divisors@ Fibonacci@ n; Flatten@ Array[f, 16, 3] (* Robert G. Wilson v *)
Showing 1-10 of 10 results.