cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A096355 Number of unattainables <= 10^n, where unattainables are A063425.

Original entry on oeis.org

5, 44, 429, 4069, 39433, 388459, 3855173, 38374875, 382644491, 3819130611
Offset: 1

Views

Author

Jason Earls, Jun 30 2004

Keywords

Crossrefs

Cf. A063114.

Extensions

a(9)-a(10) from Donovan Johnson, Jul 20 2010

A096922 Numbers n for which there is a unique k such that n = k + (product of nonzero digits of k).

Original entry on oeis.org

2, 4, 6, 8, 10, 11, 20, 23, 24, 28, 29, 32, 33, 34, 35, 41, 42, 45, 46, 47, 54, 56, 58, 60, 65, 67, 68, 70, 75, 77, 78, 81, 85, 89, 92, 94, 95, 99, 100, 101, 106, 107, 108, 109, 111, 124, 125, 128, 129, 130, 132, 133, 135, 140, 141, 143, 145, 146, 147, 152, 154, 156, 158
Offset: 1

Views

Author

Klaus Brockhaus, Jul 15 2004

Keywords

Examples

			21 is the unique k such that k + (product of nonzero digits of k) = 23, hence 23 is a term.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {200}]; Do[ a = f[n]; If[a < 200, t[[a]]++ ], {n, 200}]; Select[ Range[ 200], t[[ # ]] == 1 &] (* Robert G. Wilson v, Jul 16 2004 *)
  • PARI
    addpnd(n)=local(k,s,d);k=n;s=1;while(k>0,d=divrem(k,10);k=d[1];s=s*max(1,d[2]));n+s
    {c=1;z=160;v=vector(z);for(n=1,z+1,k=addpnd(n);if(k<=z,v[k]=v[k]+1));for(j=1,length(v),if(v[j]==c,print1(j,",")))}

A096347 Least number with n preimages (or immediate predecessors) under f(n) = n + (product of nonzero digits of n).

Original entry on oeis.org

1, 2, 12, 102, 116, 1098, 2072, 1014, 101134, 11014, 1011098, 1003525, 41021255, 210110985, 403130555, 481104655, 4401225555, 4811125555, 86413249555, 39011218055
Offset: 0

Views

Author

Jason Earls, Jun 29 2004

Keywords

Comments

First occurrence of k in A096972.
a(20) > 10^11. [From Donovan Johnson, Nov 22 2009]

Examples

			a(3)=102 because 102 is the least number with three direct predecessors, 66: 66+6*6 = 102, 74: 74+7*4 = 102, 101: 101+1*1 = 102.
		

References

  • P. A. Loomis, An Introduction to Digit Product Sequences (see link).

Crossrefs

Extensions

a(8) to a(11) from Klaus Brockhaus, Jul 07 2004
a(12) from Robert G. Wilson v, Jul 15 2004
a(13)-a(19) from Donovan Johnson, Nov 22 2009

A096972 Number of preimages of n (or immediate predecessors) under map f(k) = k + (product of nonzero digits of k).

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 3, 0, 2, 0
Offset: 1

Views

Author

Robert G. Wilson v, Jul 16 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Sort[ IntegerDigits[ n]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; n + Times @@ s]; t = Table[0, {111}]; Do[ t[[f [n]]]++, {n, 111}]; Table[ t[[n]], {n, 105}]

A230106 Number of m such that m + (product of nonzero digits of m) equals n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 2, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 3
Offset: 0

Views

Author

N. J. A. Sloane, Oct 13 2013

Keywords

Comments

Number of times n appears in A063114.

Crossrefs

Programs

  • Maple
    # Maple code for A063114, A230106, A063425, A096922
    with(LinearAlgebra):
    read transforms; # to get digprod0
    M:=1000;
    lis1:=Array(0..M);
    lis2:=Array(0..M);
    ctmax:=4;
    for i from 0 to ctmax do ct[i]:=Array(0..M); od:
    for n from 0 to M do
    m:=n+digprod0(n);
    lis1[n]:=m;
    if (m <= M) then lis2[m]:=lis2[m]+1; fi;
    od:
    t1:=[seq(lis1[i],i=0..M)]; # A063114
    t2:=[seq(lis2[i],i=0..M)]; # A230106
    COMPl(t1); # A063425
    for i from 1 to M do h:=lis2[i];
    if h <= ctmax then ct[h]:=[op(ct[h]),i]; fi; od:
    len:=nops(ct[0]); [seq(ct[0][i],i=1..len)]; # A063425 again
    len:=nops(ct[1]); [seq(ct[1][i],i=1..len)]; # A096922

Extensions

a(1) corrected by Zak Seidov, Oct 24 2013

A095992 a(1) = 30; for n > 1, a(n+1) = a(n) + {product of nonzero digits of a(n)}.

Original entry on oeis.org

30, 33, 42, 50, 55, 80, 88, 152, 162, 174, 202, 206, 218, 234, 258, 338, 410, 414, 430, 442, 474, 586, 826, 922, 958, 1318, 1342, 1366, 1474, 1586, 1826, 1922, 1958, 2318, 2366, 2582, 2742, 2854, 3174, 3258, 3498, 4362, 4506, 4626, 4914, 5058, 5258, 5658
Offset: 1

Views

Author

Julien Piquet (julipiquet(AT)yahoo.fr), Jul 18 2004

Keywords

References

  • From a puzzle; explanation found by Pierre Roger.

Crossrefs

Programs

  • Mathematica
    a[1] = 30; a[n_] := a[n] = Block[{s = Sort[ IntegerDigits[a[n - 1]]]}, While[ s[[1]] == 0, s = Drop[s, 1]]; a[n - 1] + Times @@ s]; Table[ a[n], {n, 50}]
    nxt[n_] := n+Times@@Select[IntegerDigits[n], #>0&]; NestList[nxt,30,50] (* Harvey P. Dale, Jan 08 2011 *)

Extensions

The proposer suggests that this web site may contain other sequences also.
Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 20 2004
Showing 1-6 of 6 results.