A063427 a(n) is the smallest positive integer k such that n*k/(n+k) is an integer.
2, 6, 4, 20, 3, 42, 8, 18, 10, 110, 4, 156, 14, 10, 16, 272, 9, 342, 5, 28, 22, 506, 8, 100, 26, 54, 21, 812, 6, 930, 32, 66, 34, 14, 12, 1332, 38, 78, 10, 1640, 7, 1806, 44, 30, 46, 2162, 16, 294, 50, 102, 52, 2756, 27, 66, 8, 114, 58, 3422, 12, 3660, 62, 18, 64, 104
Offset: 2
Keywords
Examples
a(6) = 3 because 6*3/(6+3)=2 is the smallest integer of the form 6*k/(6+k). a(10) = 10 since 1/10 + 1/10 = 1/5, 1/10 + 1/15 = 1/6, 1/10 + 1/40 = 1/8, 1/10 + 1/90 = 1/9 and so the first sum provides the value.
Links
- Harry J. Smith, Table of n, a(n) for n = 2..1000
Programs
-
Mathematica
Table[k=1;While[!IntegerQ[(k n)/(k+n)],k++];k,{n,2,70}] (* Harvey P. Dale, Jun 24 2011 *)
-
PARI
a(n) = { my(k=1); while (n*k%(n + k), k++); k } \\ Harry J. Smith, Aug 20 2009
Extensions
New description from Benoit Cloitre, Dec 30 2001
Entry revised by N. J. A. Sloane, Feb 13 2007
Definition revised by Franklin T. Adams-Watters, Aug 07 2009
Comments