A063438 a(n) = floor((n+1)*Pi) - floor(n*Pi).
3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4
Offset: 1
Examples
a(6)=3 because 7*Pi = 21.99..., 6*Pi = 18.84..., so a(6) = 21 - 18; a(7)=4 because 8*Pi = 25.13..., 7*Pi = 21.99..., so a(7) = 25 - 21.
References
- G. H. Hardy, Divergent Series, Oxford 1979.
- Zeller, K. and Beekmann, W., Theorie der Limitierungsverfahren. Springer Verlag, Berlin, 1970.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..2000
- Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
Crossrefs
First differences of A022844.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
Programs
-
Mathematica
Differences[Floor[Pi Range[120]]] (* Harvey P. Dale, Jul 02 2021 *)
-
PARI
j=[]; for(n=1,150,j=concat(j, floor( (n+1) * Pi) - floor(n * Pi))); j
-
PARI
{ default(realprecision, 50); for (n=1, 2000, write("b063438.txt", n, " ", floor((n + 1)*Pi) - floor(n*Pi)) ) } \\ Harry J. Smith, Aug 21 2009
-
PARI
a(n) = floor((n+1)*Pi) - floor(n*Pi) \\ Michel Marcus, Jul 15 2013
Formula
a(n) = A115790(n) + 3. - Michel Marcus, Jul 15 2013
Extensions
Offset in b-file and second PARI program corrected by N. J. A. Sloane, Aug 31 2009
Entry revised by N. J. A. Sloane, Jan 07 2014
Comments