cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A331388 a(n) = Sum_{k=1..n} mu(gcd(n, k)) * k / gcd(n, k).

Original entry on oeis.org

1, 0, 2, 3, 9, 3, 20, 12, 24, 10, 54, 15, 77, 21, 48, 48, 135, 24, 170, 57, 103, 55, 252, 60, 240, 78, 216, 123, 405, 47, 464, 192, 273, 136, 390, 144, 665, 171, 388, 228, 819, 102, 902, 327, 456, 253, 1080, 240, 1008, 240, 678, 465, 1377, 216, 1036, 492, 853, 406, 1710
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Comments

Moebius transform of A023896.

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(Gcd(n,k))*(k div Gcd(n,k)):k in [1..n]]:n in [1..60]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    Table[Sum[MoebiusMu[GCD[n, k]] k/GCD[n, k], {k, 1, n}], {n, 1, 65}]
    A023896[n_] := Sum[If[GCD[n, k] == 1, k, 0], {k, 1, n}]; Table[Sum[MoebiusMu[n/d] A023896[d], {d, Divisors[n]}], {n, 1, 65}]

Formula

a(n) = (1/n) * Sum_{k=1..n} mu(gcd(n, k)) * lcm(n, k).
a(n) = Sum_{d|n} mu(n/d) * A023896(d).
a(n) = Sum_{d|n} A007427(n/d) * A057661(d).
Sum_{k=1..n} a(k) ~ n^3 / (Pi^2 * Zeta(3)). - Vaclav Kotesovec, Feb 19 2020

A332658 a(n) = Sum_{k=1..n} mu(gcd(n, k)) * lcm(n, k) / gcd(n, k).

Original entry on oeis.org

1, 1, 8, 14, 49, 26, 146, 112, 234, 149, 604, 238, 1013, 440, 842, 896, 2311, 702, 3248, 1386, 2491, 1814, 5818, 1904, 6200, 3041, 6318, 4102, 11773, 2524, 14414, 7168, 10277, 6935, 14504, 6552, 24641, 9746, 17230, 11088, 33619, 7471, 38828, 16926, 23166, 17456
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 18 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(Gcd(n,k))*Lcm(n,k)/ Gcd(n,k):k in [1..n]]:n in [1..50]]; // Marius A. Burtea, Feb 18 2020
    
  • Mathematica
    Table[Sum[MoebiusMu[GCD[n, k]] LCM[n, k]/GCD[n, k], {k, 1, n}], {n, 1, 46}]
    A007427[n_] := Sum[MoebiusMu[n/d] MoebiusMu[d], {d, Divisors[n]}]; A056789[n_] := Sum[LCM[n, k]/GCD[n, k], {k, 1, n}]; Table[Sum[A007427[n/d] A056789[d], {d, Divisors[n]}], {n, 1, 46}]
  • PARI
    a(n) = sum(k=1, n, moebius(gcd(n, k))*lcm(n, k)/gcd(n, k)); \\ Michel Marcus, Feb 18 2020

Formula

a(n) = Sum_{d|n} A007427(n/d) * A056789(d).
Showing 1-2 of 2 results.