A063491 a(n) = (2*n - 1)*(3*n^2 - 3*n + 2)/2.
1, 12, 50, 133, 279, 506, 832, 1275, 1853, 2584, 3486, 4577, 5875, 7398, 9164, 11191, 13497, 16100, 19018, 22269, 25871, 29842, 34200, 38963, 44149, 49776, 55862, 62425, 69483, 77054, 85156, 93807, 103025, 112828, 123234, 134261, 145927, 158250, 171248, 184939
Offset: 1
References
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n-1)*(3*n^2 -3*n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{1,12,50,133},40] (* Harvey P. Dale, Jun 05 2016 *) Table[(2*n-1)*(3*n^2 -3*n +2)/2, {n,1,30}] (* G. C. Greubel, Dec 01 2017 *)
-
PARI
a(n) = { (2*n - 1)*(3*n^2 - 3*n + 2)/2 } \\ Harry J. Smith, Aug 23 2009
-
PARI
my(x='x+O('x^30)); Vec(serlaplace((-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
-
R
a <- c(0, 1, 9, 38, 110) for(n in (length(a)+1):40) a[n] <- +4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4] a [Yosu Yurramendi, Sep 04 2013]
Formula
G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -1*a(n-4) n > 3, a(1)=1, a(2)=12, a(3)=50, a(4)=133. - Yosu Yurramendi, Sep 04 2013
E.g.f.: (-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017
From Bruce J. Nicholson, Jun 17 2020: (Start)
Comments